ISLISP Working Draft 21.0

PUBLIC DOMAIN

PUBLIC DOMAIN

ISLISP Working Draft 21.0

Programming Language ISLISP

ISLISP Working Draft 21.0
This document was created Thu 29-Jul-2004 10:54am JST.

Permission to copy all or part of the material in this document, ISLISP Working Draft 21.0, without fee is granted provided that either it is reproduced without modification, or else the portion to be copied no longer identifies itself (through its title or any running headers) as ISLISP Working Draft 21.0.

The textual material that makes up this document, excluding the cover and any running headers that establish the identity of the document itself as ISLISP Working Draft 21.0, is expressly dedicated to the Public Domain, from which individual, copyrighted works (including any resulting ISO standard) may be non-exclusively derived without fee or other restriction.

This page is intentionally left mostly blank.

Contents

iiiContents

Introduction
vi
Programming Language ISLISP
1
1 Scope, Conventions and Compliance
1
1.1 Scope
1
1.2 Normative References
1
1.3 Notation and Conventions
1
1.4 Lexemes
4
1.4.1 Separators
4
1.4.2 Comments
4
1.5 Textual Representation
4
1.6 Reserved Identifiers
5
1.7 Definitions
5
1.8 Errors
8
1.8.1 Classes of error specification
8
1.8.2 Pervasive Error Types
8
1.9 Compliance of ISLISP Processors and Text
9
2 Classes
10
2.1 Metaclasses
10
2.2 Predefined Classes
11
2.3 Standard Classes
12
2.3.1 Slots
12
2.3.2 Creating Instances of Classes
13
3 Scope and Extent
14
3.1 The Lexical Principle
14
3.2 Scope of Identifiers
14
3.3 Some Specific Scope Rules
15
3.4 Extent
15
4 Forms and Evaluation
17
4.1 Forms
17
4.2 Function Application Forms
17
4.3 Special Forms
18
4.4 Defining Forms
18
defclass
defdynamic defglobal defmethod
18
4.5 Macro Forms
19
4.6 The Evaluation Model
19
4.7 Functions
20
4.8 Defining Operators
22
5 Predicates
25
5.1 Boolean Values
25
5.2 Class Predicates
25
5.3 Equality
25
5.4 Logical Connectives
28
6 Control Structure
30
6.1 Constants
30
6.2 Variables
31
6.3 Dynamic Variables
33
6.4 Conditional Expressions
34
6.5 Sequencing Forms
36
6.6 Iteration
37
6.7 Non-Local Exits
38
6.7.1 Establishing and Invoking Non-Local Exits
38
6.7.2 Assuring Data Consistency during Non-Local Exits
41
7 Objects
43
7.1 Defining Classes
43
7.1.1 Determining the Class Precedence List
45
7.1.2 Accessing Slots
46
7.1.3 Inheritance of Slots and Slot Options
46
7.2 Generic Functions
46
7.2.1 Defining Generic Functions
47
7.2.2 Defining Methods for Generic Functions
48
7.2.2.1 Agreement on Parameter Specializers and Qualifiers
49
7.2.2.2 Congruent Lambda-Lists for all Methods of a Generic Function
49
7.2.3 Inheritance of Methods
49
7.3 Calling Generic Functions
50
7.3.1 Selecting the Applicable Methods
50
7.3.2 Sorting the Applicable Methods
50
7.3.3 Applying Methods
51
7.3.3.1 Simple Method Combination
51
7.3.3.2 Standard Method Combination
51
7.3.4 Calling More General Methods
52
7.4 Object Creation and Initialization
53
7.4.1 Initialize-Object
53
7.5 Class Enquiry
54
8 Macros
55
9 Declarations and Coercions
57
10 Symbol class
59
10.1 Symbol Names
59
10.1.1 Notation for Symbols
59
10.1.2 Alphabetic Case in Symbol Names
60
10.1.3 nil and ()
60
10.2 Symbol Properties
61
10.3 Unnamed Symbols
61
11 Number class
63
11.1 Number class
63
11.2 Float class
70
11.3 Integer class
72
12 Character class
75
13 List class
77
13.1 Cons
77
13.2 Null class
79
13.3 List operations
79
14 Arrays
83
14.1 Array Classes
83
14.2 General Arrays
84
14.3 Array Operations
84
15 Vectors
87
16 String class
89
17 Sequence Functions
92
18 Stream class
95
18.1 Streams to Files
96
18.2 Other Streams
98
19 Input and Output
100
19.1 Argument Conventions for Input Functions
100
19.2 Character I/O
100
19.3 Binary I/O
104
20 Files
105
21 Condition System
107
21.1 Conditions
107
21.2 Signaling and Handling Conditions
107
21.2.1 Operations relating to Condition Signaling
108
21.2.2 Operations relating to Condition Handling
109
21.3 Data associated with Condition Classes
109
21.3.1 Arithmetic Errors
110
21.3.2 Domain Errors
110
21.3.3 Parse Errors
110
21.3.4 Simple Errors
110
21.3.5 Stream Errors
111
21.3.6 Undefined Entity Errors
111
21.4 Error Identification
111
22 Miscellaneous
114
Index
116


Introduction

The programming language ISLISP is a member of the LISP family. It is the result of cooperative efforts by the design committee.

The following factors influenced the establishment of design goals for ISLISP:

1. A desire of the international LISP community to standardize on those features of LISP upon which there is widespread agreement.

2. The existence of the incompatible dialects COMMON-LISP, EULISP, LE-LISP, and SCHEME (mentioned in alphabetical order).

3. A desire to affirm LISP as an industrial language.

This led to the following design goals for ISLISP:

1. ISLISP shall be compatible with existing LISP dialects where feasible.

2. ISLISP shall have as a primary goal to provide basic functionality.

3. ISLISP shall be object-oriented.

4. ISLISP shall be designed with extensibility in mind.

5. ISLISP shall give priority to industrial needs over academic needs.

6. ISLISP shall promote efficient implementations and applications.

The design committee wishes to thank the many specialists who contributed to this document.

Programming Language ISLISP

1 Scope, Conventions and Compliance

1.1 Scope

1. Positive Scope

This document specifies syntax and semantics of the computer programming language ISLISP by specifying requirements for a conforming ISLISP processor and a conforming ISLISP text.

2.
Negative Scope

This document does not specify:

(a)
the size or complexity of an ISLISP text that exceeds the capacity of any specific data processing system or the capacity of a particular processor, nor the actions to be taken when the corresponding limits are exceeded;

(b)
the minimal requirements of a data processing system that is capable of supporting an implementation of a processor for ISLISP;

(c)
the method of preparation of an ISLISP text for execution and the method of activation of this ISLISP text, prepared for execution;

(d)
the typographical presentation of an ISLISP text published for human reading.

(e)
extensions that might or might not be provided by the implementation.

1.2 Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of this document. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this document are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

· ISO/IEC TR 10034: 1990, Guidelines for the preparation of conformity clauses in programming language standards.

· IEEE standard 754-1985. Standard for Binary floating point arithmetic.

1.3 Notation and Conventions

For a clear definition of, and a distinction between, syntactic and semantic concepts, several levels of description abstraction are used in the following.

There is a correspondence from ISLISP textual units to their ISLISP data structure representations. Throughout this document the text and the corresponding ISLISP objects (data structures) are addressed simultaneously. ISLISP text can be seen as an external specification of ISLISP data structures. To distinguish between the two representations different concepts are used. When textual representation is discussed, textual elements (such as identifiers, literals, and compound forms) are used; when ISLISP objects are discussed, objects (such as symbols and lists) are used.

The constituents of ISLISP text are called XE "forms"forms. A form can be an identifier, a literal, or a compound form. A compound form can be a function application form, a macro form, a special form, or a defining form.

An identifier is represented by a symbol. A compound form is represented by a non-null list. A literal is represented neither a symbol nor a list, and so is neither an identifier nor a compound form; for example, a number is a literal.

An object is XE "prepared for execution"prepared for execution; this might include transformation or compilation, including macro expansion. The method of preparation for execution and its result are not defined in this document (with exception of the violations to be detected). After successful preparation for XE "execution"execution the result is ready for execution. The combination of preparation for execution and subsequent execution implements ISLISP's XE "evaluation model"evaluation model. The term XE "evaluation""evaluation" is used because ISLISP is an expression language_each form has a value which is used to compute the value of the containing form. The results obtained when an entity is prepared for execution are designated throughout this document by the construction "prepared entity"; e.g., "prepared form," "prepared special form."

Example: A "cond special form" becomes a "prepared cond" by preparation for execution.

In the examples, the metasymbol "=>" designates the result of an actual evaluation. For example:

(+ 3 4) => 7

The metasymbol "->" identifies the class that results from the evaluation of a form having a given pattern. For example:

(+ i1 i2) -> <integer>
Given a form pattern (usually defined by its constant parts, the function name or special operator), -> relates it to the class to which the result of the evaluation of all matching forms belong.

Form patterns or forms which are equivalent are related by (
The following notational conventions for form patterns are used:

(f-name argument*) -> result-class 
f kind

In this notation, words written in italics are non-terminal (pattern variables). f-name is always terminal: Specific function names, special operators, defining form names, or generic function names are always presented.

An underlined term (like the name in a defining form) in this notation, indicates an expression that is not evaluated. If a form might or might not be evaluated (like one of the then-form or else-form in an if), this is indicated explicitly in the text.

Class names are uniformly denoted as follows: <class-name>. For example, <list> is the name of a class; this is usually spoken aloud as "list class."

Notes, appearing as Note: note-text, in this document have no effect on the language. They are for better understanding by the human reader.

Regarding the pattern variables and the extensions of above, the following conventions are also adopted:


term+
denotes one or more occurrences of term;


term*
denotes zero or more occurrences of term;


[term]
denotes at most one occurrence of term, commonly one says that term


is optional;


{term1 term2 …}
denotes grouping of terms.


term1 | term2 | …
denotes grouping of alternative terms.

The following naming conventions are used to denote forms whose arguments obey the respective class restrictions:


array, array1, … arrayj, …
<basic-array>

cons, cons1, … consj, …
<cons>

list, list1, … listj, …
<list>

obj, obj1, … objj, … 
<object>

sequence, sequence1, … sequencej, …
<basic-vector> or <list> (see §17)


stream, stream1, … streamj, …
<stream>

string, string1, … stringj, …
<string>

char, char1, … charj, … 
<character>

function, function1, … functionj, …
<function>

class, class1, … classj, …
<class>

symbol, symbol1, … symbolj, …
<symbol>

x, x1, … xj, … 
<number>

z, z1, … zj, …
<integer>
In this document the conventions detailed below are used, except where noted:

-p
Predicates sometimes called "boolean functions" usually have names that end in a -p. Usually every class <name> has a characteristic function, whose name is built as name-p if name is hyphenated (generic-function-p), or namep if name is not hyphenated (symbolp). Note that not all functions whose names end with "p" are predicates.

create-
Usually a built-in class <name> has a constructor function, which is called create-name.

def
This is used as the prefix of the defining operators.

set-
Within this document, any functions named set-name are writers for a place, for which there is a corresponding reader named name.

For any kind of entity in the language, the phrase "entity-kind name" refers to the entity of kind entity-kind denoted by name. For example, the phrases "function name," "constant name," or "class name" respectively mean the function, constant, or class denoted by name.

1.4 Lexemes

An ISLISP text is built up from lexemes. Lexemes are built up from at least the following characters (see §12):

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 + - < > / * & = . ? _ ! $ % : @ [ ] ^ { } ~ #

Additional characters are implementation defined.

The following characters are individual lexemes (see §8 and §13.1):

( ) , ' `

The following character tuples (where n is a sequence of digits) are individual lexemes (see §4.7, §8, and §14.1):

#' #( ,@ #B #b #O #o #X #x #na #nA

The textual representations of symbols (see §10), numbers (see §11), characters (see §12), and strings (see §16) are lexemes.

\ (single escape) and | (multiple escape) are special characters. They may occur in some lexemes (identifiers and string literals).

Other lexemes are separated by delimiters. Delimiters are separators along with the following characters:

( ) ` , '

The effect of delimiting is disestablished inside a string (see §16) or inside a corresponding pair of multiple escape characters (see §10) or for the character immediately following #\.

1.4.1 Separators

Separators are as follows: blank, comments, newline, and an implementation-defined set of characters, (e.g., tabs). Separators have no meaning and can be replaced by each other without changing the meaning of the ISLISP text.

1.4.2 Comments

The character semicolon (;) is the XE "comment begin"comment begin character. That is, the semicolon and all the characters up to and including the end-of-line form a comment.

A character sequence beginning with XE "#|"#| and ending with XE "|#"|# is a comment. Such comments may be nested.

Being a separator, a comment cannot occur inside a lexeme.

1.5 Textual Representation

The textual representation of an object is machine independent. The following are some of the textual representations of the ISLISP objects. This representation is readable by the read function. Lexemes are described in §1.4

Null
The object nil is the only object whose class is <null>. Upon input, it may be written as nil or (). It is implementation defined whether nil prints as nil or ().

List
Proper lists are those lists terminated by nil. Usually they are denoted as (obj1 obj2 … objn). A dotted list (i.e., a list whose last tail is not nil) appears as (obj1 obj2 … objn . objn+1).

Character
An instance of the <character> class is represented by #\?, where "?" is the character in question. There are two special standard characters that are not represented in this way, namely newline and space, whose representations are #\newline and #\space, respectively.

Cons
A cons is expressed as (car . cdr), where the car and cdr are objects.

Integer
An integer (radix 10) is represented as a sequence of digits optionally preceded by a + or - sign. If the number is represented in binary radix (or in octal or hexadecimal) then the textual representation is preceded by #b (or #o or #x, respectively).

Float
A floating point number is written in one of the following formats:

[s]dd…d.dd…d

[s]dd…d.dd…d.E[s]dd…d

[s]dd…d.dd…d.e[s]dd…d

[s]dd…d.E[s]dd…d

[s]dd…d.e[s]dd…d

where s is either "+" or "-", and d is one of "0"-"9". For example: 987.12, +12.5E-13, -1.5E12, 1E321
.

Vector
A vector of class <general-vector> is written as #(obj1 … objn).

Array
An array of class <general-array*> or <general-vector> can be written on input as #na (where n is an integer indicating the number of dimensions of the array) followed by a nested structure of sequences denoting the contents of the array. This structure is defined as follows. If n = 1 the structure is simply (obj1 … objn). If n > 1 and the dimensions are n1 n2 …, the structure is (str1 … strn1), where the stri are the structures of the n1 subarrays, each of which has dimensions (n2 …). As an example, the representation of (create-array '(2 3 4) 5) is as follows:

#3a(((5 5 5 5) (5 5 5 5) (5 5 5 5)) ((5 5 5 5) (5 5 5 5) (5 5 5 5))).

On output (see format), arrays of class <general-vector> will be printed using #(...) notation.

String
A string is represented by the sequence of its characters enclosed in a pair of "'s. For example: "abc". Special characters are preceded with a backslash as an escape character.

Symbol
A named symbol is represented by its print name. Vertical bars (|) might need to enclose the symbol if it contains certain special characters; see §10. The notation, if any, used for unnamed symbols is implementation defined.

There are objects which do not have a textual representation, such as a class or an instance of the <function> class.

1.6 Reserved Identifiers

Symbols whose names contain a colon (:) or an ampersand (&) are reserved and may not be used as identifiers. Symbols whose names start with colon (:) are called XE "keywords"keywords.

1.7 Definitions

For the purposes of this document, the following definitions apply:

1.7.1
XE "abstract class"abstract class: A class that by definition has no direct instances.

1.7.2
XE "activation"activation: Computation of a function. Every activation has an activation point, an activation period, and an activation end. The activator, which is a function application form prepared for execution, starts the activation at the activation point.

1.7.3
XE "accessor"accessor: Association of a reader and a writer for a slot of an instance.

1.7.4
XE "binding"binding: Binding has both a syntactic and a semantic aspect.

Syntactically, "binding" describes the relation between an identifier and a binding ISLISP form. The property of being bound can be checked textually by relating defining and applied identifier occurrences.

Semantically, "binding" describes the relation between a variable, its denoting identifier, and an object (or, the relation between a variable and a location). This relation might be imagined to be materialized in some entity, the binding. Such a binding entity is constructed at run time and destroyed later, or might have indefinite extent.

1.7.5
XE "class"class: Object, that determines the structure and behavior of a set of other objects, called its instances. The behavior is the set of operations that can be performed on an instance.

1.7.6
XE "condition"condition: An object that represents a situation that has been (or might be) detected by a running program.

1.7.7
XE "definition point"definition point: An identifier represents an ISLISP object starting with its definition point, which is a textual point of an ISLISP text.

1.7.8
XE "direct instance"direct instance: Every ISLISP object is direct instance of exactly one class, which is called "its class". The set of all direct instances together with their behavior constitute a class.

1.7.9
XE "dynamic"dynamic: Having an effect that is determined only through program execution and that cannot, in general, be determined statically.

1.7.10
XE "dynamic variable"dynamic variable: A variable whose associated binding is determined by the most recently executed active block that established it, rather than statically by a lexically apparent block according to the lexical principle.

1.7.11
XE "evaluation"evaluation: Computation of a form prepared for execution which results in a value and/or a side effect.

1.7.12
XE "execution"execution: A sequence of (sometimes nested) activations.

1.7.13
XE "extension"extension: An implementation-defined modification to the requirements of this document that does not invalidate any ISLISP text complying with this document (except by prohibiting the use of one or more particular spellings of identifiers), does not alter the set of actions which are required to signal errors, and does not alter the status of any feature designated as implementation dependent.

1.7.14
XE "form"form: A single, syntactically valid unit of program text, capable of being prepared for execution.

1.7.15
XE "function"function: An ISLISP object that is called with arguments, performs a computation (possibly having side-effects), and returns a value.

1.7.16
XE "generic function"generic function: Function whose application behavior is determined by the classes of the values of its arguments and which consists - in general - of several methods.

1.7.17
XE "identifier"identifier: A lexical element (lexeme) which designates an ISLISP object. In the data structure representation of ISLISP texts, identifiers are denoted by symbols.

1.7.18
XE "immutable binding"immutable binding: A binding is immutable if the relation between an identifier and the object represented by this identifier cannot be changed. It is a violation if there is attempt to change an immutable binding XE "error-id. immutable-binding"(error-id. immutable-binding).

1.7.19
XE "immutable object"immutable object: An object is immutable if it is not subject to change, either because no operator is provided that is capable of effecting such change, or because some constraint exists which prohibits the use of an operator that might otherwise be capable of effecting such a change. Except as explicitly indicated otherwise, a conforming processor is not required to detect attempts to modify immutable objects; the consequences are undefined if an attempt is made to modify an immutable object.

1.7.20
XE "implementation defined"implementation defined: A feature, possibly differing between different ISLISP processors, but completely defined for every processor.

1.7.21
XE "implementation dependent"implementation dependent: A feature, possibly differing between different ISLISP processors, but not necessarily defined for any particular processor.

Note: A conforming ISLISP text must not depend upon implementation-dependent features.
1.7.22
XE "inheritance"inheritance: Relation between a class and its superclass which maps structure and behavior of the superclass onto the class. ISLISP supports a restricted form of multiple inheritance; i.e., a class may have several direct superclasses at once.

1.7.23
XE "instance (of a class)"instance (of a class): Either a direct instance of a class or an instance of one of its subclasses.

1.7.24
XE "literal"literal: An object whose representation occurs directly in a program as a constant value.

1.7.25
XE "metaclass"metaclass: A class whose instances are themselves classes.

1.7.26
XE "method"method: Case of a generic function for a particular parameter profile, which defines the class-specific behavior and operations of the generic function.

1.7.27
XE "object"object: An object is anything that can be created, destroyed, manipulated, compared, stored, input, or output by the ISLISP processor. In particular, functions are ISLISP objects. Objects that can be passed as arguments to functions, can be returned as values, can be bound to variables, and can be part of structures, are called first-class objects.

1.7.28
XE "operator"operator: The first element of a compound form, which is either a reserved name that identifies the form as a special form, or the name of a macro, or a lambda expression, or else an identifier in the function namespace.

1.7.29
XE "parameter profile"parameter profile: Parameter list of a method, where each formal parameter is accompanied by its class name. If a parameter is not accompanied by a class name, it belongs to the most general class.

1.7.30
XE "place"place: Objects can be stored in places and retrieved later. Places are designated by forms which are permitted as the first argument of setf. If used this way an object is stored in the place. If the form is not used as first argument of setf the stored object is retrieved. The cases are listed in the description of setf.

1.7.31
XE "position"position:
(a)
argument position: Occurrence of a text unit as an element in a form excluding the first one.

(b)
operator position: Occurrence of a text unit as the first element in a form.

1.7.32
XE "process"process: The execution of an ISLISP text prepared for execution.

1.7.33
XE "processor"processor: A system or mechanism, that accepts an ISLISP text (or an equivalent data structure) as input, prepares it for execution, and executes the result to produce values and side effects.

1.7.34
XE "programm"program: An aggregation of expressions to be evaluated, the specific nature of which depends on context. Within this document, the term "program" is used only in an abstract way; there is no specific syntactic construct that delineates a program.

1.7.35
XE "scope"scope: The scope of an identifier is that textual part of a program where the meaning of that identifier is defined; i.e., there exists an ISLISP object designated by this identifier.

1.7.36
XE "slot"slot: A named component of an instance which can be accessed using the slot accessors. The structure of an instance is defined by the set of its slots.

1.7.37
XE "text"text: A text that complies with the requirements of this document (i.e., with the syntax and static semantics of ISLISP). An ISLISP text consists of a sequence of toplevel forms.

1.7.38
XE "toplevel form"toplevel form: Any form that either is not nested in any other form or is nested only in progn forms.

1.7.39
XE "toplevel scope"toplevel scope: The scope in which a complete ISLISP text unit is processed.

1.7.40
XE "writer"writer: A method associated with a slot of a class, whose task is to bind a value with a slot of an instance of that class.

1.8 Errors

An XE "error"error is a situation arising during execution in which the processor is unable to continue correct execution according to the semantics defined in this document. The act of detecting and reporting such an error is called XE "signaling"signaling the error.

A XE "violation"violation is a situation arising during preparation for execution in which the textual requirements of this document are not met. A violation shall be detected during preparation for execution.

1.8.1 Classes of error specification

The wording of error specification in this document is as follows:

(a)
"an error shall be signaled"

An implementation shall detect an error of this kind no later than the completion of execution of the form having the error, but might detect them sooner (e.g., when the code is being prepared for execution).

Evaluation of the current form shall stop. If no active handler is established by with-handler, it is implementation defined whether the entire running process exits, a debugger is entered, or control is transferred elsewhere within the process.

(b)
"the consequences are undefined"

This means that the consequences are unpredictable. The consequences may range from harmless to fatal. No conforming ISLISP text may depend on the results or effects. A conforming ISLISP text must treat the consequences as unpredictable. In places where "must," "must not," or "may not" are used, then this is equivalent to stating that "the consequences are undefined" if the stated requirement is not met and no specific consequence is explicitly stated. An implementation is permitted to signal an error in this case.

For indexing and cross-referencing convenience, errors in this document have an associated error identification label, notated by text such as "(error-id. sample)." The text of these labels has no formal significance to ISLISP texts or processors; the actual class of any object which might be used by the implementation to represent the error and the text of any error message that might be displayed is implementation dependent.

1.8.2 Pervasive Error Types

Most errors are described in detail in the contect in which they occur. Some error types are so pervasive that their detailed descriptions are consolidated here rather than repeated in full detail upon each occurrence.

1. Domain error: an error shall be signaled if the object given as argument of a standard function for which a class restriction is in effect is not an instance of the class which is required in the definition of the function XE "error-id. domain-error"(error-id. domain-error).

2. Arity error: an error shall be signaled if a function is activated with a number of arguments which is different than the number of parameters as required in the function definition XE "error-id. arity-error"(error-id. arity-error).

3. Undefined entity error: an error shall be signaled if the entity denoted by an identifier does not exist when a reference to that entity is made XE "error-id. undefined-entity"(error-id. undefined-entity). Two commonly occuring examples of this type of error are undefined-function and unbound-variable.

This list does not exhaust the space of error types. For a more complete list, see §21.4.

1.9 Compliance of ISLISP Processors and Text

An ISLISP processor complying with the requirements of this document shall

(a)
accept and implement all features of ISLISP specified in this document.

(b)
reject any text that contains any textual usage which this document explicitly defines to be a violation (see §1.8).

(c)
be accompanied by a document that provides the definitions of all implementation-defined features.

(d)
be accompanied by a document that separately describes any features accepted by the processor that are not specified in this document; these extensions shall be described as being "extensions to ISLISP as specified by ISLISP Working Draft 21.0."

A complying ISLISP text shall not rely on implementation-dependent features. However, a complying ISLISP text may rely on implementation-defined features required by this document.

A complying ISLISP text shall not attempt to create a lexical variable binding for any named constant defined in this document. It is a violation if any such attempt is made.

2 Classes

In ISLISP, data types are covered by the class system. A XE "class"class is an object that determines the structure and behavior of a set of other objects, which are called its XE "instances"instances. Every ISLISP object is an instance of a class. The behavior is the set of operations that can be performed on an instance.

A class can inherit structure and behavior from other classes. A class whose definition refers to other classes for the purpose of inheriting from them is said to be a XE "subclass"subclass of each of those classes. The classes that are designated for purposes of inheritance are said to be XE "superclass"superclasses of the inheriting class.

A class can be named by an identifier. For example, this identifier can be used as a parameter specializer in method definitions. The class special form can be used to refer to access the class object corresponding to its name.

A class C1 is a XE "direct superclass"direct superclass of a class C2 if C2 explicitly designates C1 as a superclass in its definition, or if C1 is defined by this document to be a direct superclass of C2 (for example, by use of a direct arrow from C2 to C1 in Figure 1). In this case C2 is a XE "direct subclass"direct subclass of C1. A class Cn is a XE "superclass"superclass of a class C1 if there exists a series of classes C2,…,Cn-1 such that Ci+1 is a direct superclass of Ci for 1 ≤ i < n. In this case, C1 is a XE "subclass"subclass of Cn. A class is considered neither a superclass nor a subclass of itself. That is, if C1 is a superclass of C2, then C1 ≠ C2. The set of classes consisting of some given class C along with all of its superclasses is called "C and its superclasses."

If a user-defined class C inherits from two classes, C1 and C2, the only superclasses that C1 and C2 may have in common are <standard-object> or <object>. This allows a restricted form of multiple inheritance.

Every ISLISP object is a direct instance of exactly one class which is called "its" class.

An instance of a class is either a direct instance of that class or an instance of one of its subclasses.

Classes are organized into a XE "directed acyclic graph"directed acyclic graph defined by the subclass relation. The nodes are classes and there is an edge from C1 to C2 iff C2 is direct subclass of C1. This graph is called the inheritance graph. It has as root the class <object>, the only class with no superclass. Therefore it is the superclass of every class except itself. The class named <standard-object> is an instance of the class <standard-class> and is a superclass of every class that is an instance of <standard-class> except itself.

Each class has a XE "class precedence list"class precedence list, which is a total ordering on the set of the given class and its superclasses. The total ordering is expressed as a list ordered from most specific to least specific. The class precedence list is used in several ways. In general, more specific classes can XE "shadow (a class)"shadow, or override, features that would otherwise be inherited from less specific classes. The method selection and combination process uses the class precedence list to order methods from most specific to least specific.

2.1 Metaclasses

Classes are represented by objects that are themselves instances of classes. The class of the class of an object is termed the XE "metaclass"metaclass of that object. The term metaclass is used to refer to a class that has instances that are themselves classes.

The metaclass determines the form of inheritance used by the classes that are its instances and the representation of the instances of those classes.

The ISLISP Object System provides the following predefined metaclasses:

· The class <standard-class> is the default class of classes defined by defclass.

· The class <built-in-class> is the class whose instances are classes that have special implementations or restricted capabilities. For example, it is not possible to define subclasses of a built-in class.

<object>

    <basic-array>

        <basic-array*>

            <general-array*>

        <basic-vector>

            <general-vector>

            <string>

    <built-in-class>

    <character>

    <function>

        <generic-function>

            <standard-generic-function>

    <list>

        <cons>

        <null> ;; Note: <null> also inherits from <symbol>

    <number>

        <float>

        <integer>

    <serious-condition>

        <error>

            <arithmetic-error>

                 <division-by-zero>

                 <floating-point-overflow>

                 <floating-point-underflow>

            <control-error>

            <parse-error>

            <program-error>

                 <domain-error>

                 <undefined-entity>

                     <unbound-variable>

                     <undefined-function>

            <simple-error>

            <stream-error>

                <end-of-stream>

        <storage-exhausted>

    <standard-class>

    <standard-object>

    <stream>

    <symbol>

        <null> ;; Note: <null> also inherits from <list>

Subclasses appear indented under superclasses.

Figure 1. Class Inheritance

2.2 Predefined Classes

The following classes are primitive classes in the class system (i.e., predefined classes that are not metaclasses):

<arithmetic-error>
<floating-point-underflow>
<simple-error>

<basic-array>
<function>
<standard-generic-function>

<basic-array*>
<general-array*>
<standard-object>

<basic-vector>
<general-vector>
<storage-exhausted>

<character>
<generic-function>
<stream>

<cons>
<integer>
<stream-error>

<control-error>
<list>
<string>

<division-by-zero>
<null>
<symbol>

<domain-error>
<number>
<unbound-variable>

<end-of-stream>
<object>
<undefined-entity>

<error>
<parse-error>
<undefined-function>

<float>
<program-error>

<floating-point-overflow>
<serious-condition>

The classes <standard-class> and <built-in-class> are predefined metaclasses.

A user-defined class, defined by defclass, must be implemented as an instance of <standard-class>. A predefined class can be implemented either as an instance of <standard-class> (as if defined by defclass) or as an instance of <built-in-class>.

Figure 1 shows the required inheritance relationships among the classes defined by ISLISP. For each pair of classes C1 and C2 in this figure, if C1 is linked directly by an arrow to C2, C1 is a direct superclass of C2 (and C2 is a direct subclass of C1). Additional relationships might exist, subject to the following constraints:

1. It is implementation defined whether <standard-generic-function> is a subclass of the class <standard-object>.

2. Except as described in Figure 1 and the above constraint on <standard-generic-function>, no other subclass relationships exist among the classes defined in this document. However, additional implementation-specific subclass relationships may exist between implementation-specific classes and classes defined in this document.

3. The class precedence list for <null> observes the partial order <null>, <symbol>, <list>, <object>.

4. Users may define additional classes using defclass.

A built-in class is one whose instances have restricted capabilities or special representations. The defclass defining form must not be used to define subclasses of a built-in class. An error shall be signaled if create is called to create an instance of a built-in class.

A standard class is an instance of <standard-class>, and a built-in class is an instance of <built-in-class>.

A standard class defined with no direct superclasses is guaranteed to be disjoint from all of the classes in the figure, except for the classes named <standard-object> and <object>.

The class <function> is the class of all functions. The class <standard-generic-function> is the default class of all generic functions.

2.3 Standard Classes

2.3.1 Slots

An object that has <standard-class> as its metaclass has zero or more named slots. The slots of an object are determined by the class of the object. Each slot can hold one object as its value. The name of a slot is an identifier.

When a slot does not have a value, the slot is said to be unbound. The consequences are undefined if an attempt is made to retrieve the value of an XE "unbound"unbound slot.

Storing and retrieving the value of a slot is done by generic functions defined by the defclass defining form.

All slots are local; i.e., there are no shared slots accessible by several instances.

A class is said to XE "define"define a slot with a given name when the defclass defining form for that class contains a slot specifier with that name. Defining a slot does not immediately create a slot; it causes a slot to be created each time an instance of the class is created.

A slot is said to be XE "accessible"accessible in an instance of a class if the slot is defined by the class of the instance or is inherited from a superclass of that class. At most one slot of a given name can be accessible in an instance. A detailed explanation of the inheritance of slots is given in the section §7.1.3.

2.3.2 Creating Instances of Classes

The generic function create creates and returns a new instance of a class. ISLISP provides several mechanisms for specifying how a new instance is to be initialized. For example, it is possible to specify the initial values for slots in newly created instances by providing default initial values. Further initialization activities can be performed by methods written for generic functions that are part of the initialization protocol.

3 Scope and Extent

In describing ISLISP, the notions of scope and extent are useful. The first is a syntactic concept, the latter is a semantic concept. Although syntactic constructs, especially identifiers, are used to refer to runtime entities (i.e., objects arising during execution), a single entity cannot have both scope and extent. Scope is a feature of an identifier, referring to that textual part of an ISLISP text (see §1.3 and §1.7.37) within which this identifier occurs with unique meaning. Extent refers to the interval of execution time during which a certain object exists.

A XE "namespace"namespace is a mapping from identifiers to meanings. In ISLISP there are six namespaces: variable, dynamic variable, function, class, block, and tagbody tag. It is therefore possible for a single identifier to have any or all of these six meanings, depending on the context. For example, an identifier's meaning is determined by the function namespace when the identifier appears in the operator position of a function application form, whereas the same identifier's meaning is determined by the variable namespace if it appears in an argument position in the same form.

3.1 The Lexical Principle

ISLISP is designed following the principle of XE "lexical visibility"lexical visibility. This principle states that an ISLISP text must be structured in properly nested lexical blocks of visibility. Within a block, all defined identifiers of that block and of all enclosing outer blocks are visible. Each identifier in a namespace has the meaning determined by the innermost block that defines it.

ISLISP also supports a form of XE "dynamic binding"dynamic binding. Dynamic bindings are established and accessed by a separate mechanism (i.e., defdynamic, dynamic-let, and dynamic). The dynamic value associated with such an identifier is the one that was established by the most recently executed XE "active block"active block that established it, where an active block is one that has been established and not yet disestablished. Because a separate mechanism is used, the lexical meaning of and the dynamic value associated with an identifier are simultaneously accessible wherever both are defined.

3.2 Scope of Identifiers

The XE "scope"scope of an identifier is that part of an ISLISP text where the meaning of the identifier is defined. It starts textually with the definition point - a point that is specified individually for each form that establishes an identifier. Only identifiers can have a scope.

For each namespace, if an identifier has scope sa and an identical identifier (in the same namespace) has nested scope sb, then the scope sb of the inner identifier and every scope contained in it are not part of the scope sa. It is said that the inner scope XE "shadows"shadows the outer scope.

Each complete ISLISP text unit is processed in a scope called the XE "toplevel scope"toplevel scope.

In each namespace, nested binding forms shadow outer binding forms and defining forms.

3.3 Some Specific Scope Rules

The toplevel scope is the scope of identifiers of required built-in functions, special operators, defining operators and constants.

Reserved identifiers are not subject to the lexical principle, because they are not identifiers. They cannot be defined or bound. See §1.6.

(let ((a1 f-a1)

      ...

      (x f-x) ...

      (z1 f-z1))

      ... 
; now a1...x...z1 are applicable, their scope begins here
  (let ((a2 f-a2)
; a1...x...z1 might be defined newly, but:
          ...
; the outer a1...x...z1 are still usable
         (x f-x2)
; the inner a2...x...z2 are not yet usable
          ...

         (z2 f-z2))
; the scope of the outer x becomes shadowed

; the scope for the inner a2...x...z2 starts
   ...
; now outer a1, z1 and inner a2...x...z2 are applicable
  )
; scopes of a2...x...z2 end here
...
; scope of outer x becomes unshadowed
)
; scopes of a1...x...z1 end here
Figure 2. Scope Example

3.4 Extent

Complementary to scope which is a syntactic concepts, XE "extent"extent is a semantic concept: It describes the lifetime of entities.

Objects are created at some time during execution. In most cases, it is undetermined when an object ends its existence: its lifetime begins when the object is created and ends when reference to it is no longer possible (and the object is subject to garbage collection). In this case the object is said to have XE "indefinite extent"indefinite extent.

In other cases the processor creates entities that are associated with prepared text. The lifetime of such objects begins at the activation point of a defining construct and ends at the end of activation; in this case the object is said to have XE "dynamic-extent"dynamic extent.

During execution, defining forms and the following binding forms create bindings at their activation points:

block
let
with-open-io-file

dynamic-let
let*
with-open-output-file

flet
tagbody
with-standard-input

for
with-error-output
with-standard-output

labels
with-open-input-file

The bindings established by defining forms may have indefinite extent. Even in local binding constructs, bindings might not vanish upon activation end of the prepared block if one or more function objects are created during execution of the prepared block that contain references to those bindings, the bindings will have a lifetime equal to the longest lifetime of those function objects.

Example:
(defun copy-cell (x) (cons (car x) (cdr x)))

The scope of the identifier x is the body alone - i.e., (cons (car x) (cdr x)). The meaning of x is defined for the entire body. x, as identifier, cannot have an extent. The defun form for copy-cell is prepared for execution and thereby copy-cell becomes a prepared function. During execution the prepared function copy-cell might be activated. Activation in this case results in the creation of a binding between the variable denoted by x and the object which is used as argument. The binding of x is an entity whose extent lasts from the activation point to the activation end of the function. (In general the extent of a binding can last beyond the activation end, but this does not occur in this simple case.) We say that the binding of x is XE "established"established upon activation of the function and is XE "disestablished"disestablished at activation end.

4 Forms and Evaluation

4.1 Forms

Execution presupposes successful preparation for execution of an ISLISP text subject to the evaluation model. Execution is an activation of a prepared text form that results in a value and perhaps in some side effects.

An ISLISP text is a sequence of forms.

Throughout this document the value a form returns is described, but in general a form might not return if one of its subforms executes a non-local exit (see §6.7.1). Therefore, it should be understood that all such descriptions implicitly include the provision that if the form returns, a particular value is returned.

The following are valid forms in ISLISP:

· Compound forms

- Special forms

- Defining forms

- Function application forms

- Macro forms

· Identifiers

· Literals

A form, when evaluated, returns an object as its value, though some forms may not return (e.g., return-from).

A compound form is written as (operator argument*). The operator must be special operator, a defining operator, an identifier, or a lambda expression. The identifier names a function, a macro, or a generic function. It is a violation if operator is a literal.
A XE "toplevel form"toplevel form is a form that is either not lexically nested within another form or is lexically nested only within one or more progn forms. Special forms and function application forms at toplevel are called XE "set-up forms"set-up forms. It is a violation if a defining form is not a toplevel form.

4.2 Function Application Forms

A XE "function application form"function application form is a compound form whose operator is an identifier (naming a function) or whose operator is a lambda expression. All of the arguments are evaluated, from left to right, and the function is called with (or "applied to") arguments that are, in the same order, the objects resulting from these evaluations. This document describes a function application form in the following format:

(function-name argument*) -> result-class
function

This describes an ordinary function.

(generic-function-name argument*) -> result-class
generic function

This describes a generic function.

(local-function-name argument*) -> result-class
local function

This describes an ordinary function that is available only in a specified lexical scope.

4.3 Special Forms

A XE "special form"special form is a form whose arguments are treated in a special way; for example, arguments are not evaluated or are evaluated in a special order. It is implementation defined whether any special form is implemented as a macro (see §4.5 and §8). Special forms are recognized because they have a XE "special operator"special operator in their operator position. The following are special operators:

and
dynamic-let
let*
throw
assure
flet
or
unwind-protect

block
for
progn
while

case
function
quote
with-error-output

case-using
go
return-from
with-handler

catch
if
set-dynamic
with-open-input-file

class
ignore-errors
setf
with-open-io-file

cond
labels
setq
with-open-output-file

convert
lambda
tagbody
with-standard-input

dynamic
let
the
with-standard-output

There might be additional, implementation-defined special operators.

This document describes the evaluation of special forms in the following format:

(special-operator argument*) -> result-class
special operator

4.4 Defining Forms

A XE "defining form"defining form is a toplevel special form (see §4.3) that establishes a binding between name and an object which is the result of handling the arguments according to the semantics implied by defining-form-name; it is a violation if a defining form is not a toplevel form. For each namespace, defining forms can occur at most once for the same name and, in case of method definitions for the same parameter profile. A defining form is a compound form whose operator is a XE "defining operator"defining operator. These are the defining operators:

defclass
defdynamic
defglobal
defmethod

defconstant
defgeneric
defmacro
defun

This document describes defining forms in the following format:

(defining-form-name name argument*) -> <symbol>
defining operator

4.5 Macro Forms

Macro forms are expanded during preparation for execution.

For information on how macros are processed, see §8.

4.6 The Evaluation Model

This section provides an operational model of the process of evaluation.

The process of evaluation has two steps: A valid ISLISP text is first prepared for execution, and then the prepared text is executed. Both the process of preparing the text for execution and the properties of a prepared text are implementation dependent, except that all macros have been expanded in the prepared text (see §8). The process of execution which follows is described in terms of fully macroexpanded forms.

A prepared form is executed as follows:

1. If the form is a literal, the result is the form itself.

2. If the form is an identifier, the result is the object denoted by the identifier in the variable namespace of the current lexical environment. An error shall be signaled if no binding has been established for the identifier in the variable namespace of current lexical environment (see §1.8.2) XE "error-id. unbound-variable"(error-id. unbound-variable).
3. If the form is a compound form, then one of the following cases must apply:

(a) If the operator is a special operator, then the form is a special form and its arguments are evaluated according to the definition of the special operator. For example, if first evaluates its condition expression and, depending on the result obtained, it then evaluates the "then" form or the "else" form.

(b) If the operator names a defining form, then the first argument is an identifier. The remaining arguments are handled according to the specification of the defining form and the resulting object is used to establish a binding between the identifier and that object in the appropriate namespace.

(c) If the operator is a lambda-expression, then the arguments are evaluated. The order of evaluation of the arguments is sequentially from left to right. Then the function denoted by the lambda-expression is invoked with the evaluated arguments as actual parameters. The result is the value returned by the function, if it returns.

Example:
((lambda (x) (+ x x)) 4)
=> 8

(d) Otherwise, the compound form is a function application form. The operator position of the form is an identifier; it will be evaluated in the function namespace to produce a function to be called. An error shall be signaled if no binding has been established for the identifier in the function namespace of the current lexical environment (see §1.8.2) XE "error-id. undefined-function"(error-id. undefined-function). The arguments are evaluated in order from left to right. Then the function is invoked with the evaluated arguments as actual parameters. The result is the value returned by the function, if it returns.

4. Otherwise, an error shall be signaled XE "error-id. undefined-function"(error-id. undefined-function).

See §1.8.2 for descriptions of error situations that might occur during execution of the above cases.

4.7 Functions

A function can XE "receive (argument to a function)"receive some objects as arguments upon activation. If a function XE "return (a valuefrom a function)"returns, it returns an object as its XE "value"value. A function binding can be established in one of the following ways:

· by using function defining forms; i.e., the defun, defgeneric, and defclass defining forms

· by using labels and flet special forms

XE "functionp"(functionp obj) -> boolean
function

Returns t if obj is a (normal or generic) function; otherwise, returns nil. obj may be any ISLISP object.

Example:
(functionp (function car))
=> t

Function bindings are entities established during execution of a prepared labels or flet forms or by a function-defining form. A function binding is an association between an identifier, function-name, and a function object that is denoted by function-name if in operator position or by (function function-name) elsewhere.

XE "function"(function function-name) -> <function>
special operator

XE "#’"#'function-name -> <function>
syntax

This special form denotes a reference to the function named by function-name. This special form is used to refer to identifiers defined by function-defining forms, labels, or flet which are not in operator position.

(function function-name) can be written as #'function-name.

It returns the function object named by function-name.

An error shall be signaled if no binding has been established for the identifier in the function namespace of current lexical environment (see §1.8.2) XE "error-id. undefined-function"(error-id. undefined-function). The consequences are undefined if the function-name names a macro or special form.

Example:
(funcall (function -) 3)
=> -3

(apply #'- '(4 3))

=> 1

XE "lambda"(lambda lambda-list form*) -> <function>
special operator

Where:

lambda-list
::= (identifier* [XE "&rest"&rest identifier]) |


    (identifier* [XE ":rest":rest identifier])

and where no identifier may appear more than once in lambda-list.

Execution of the lambda special form creates a function object.

The scope of the identifiers of the lambda-list is the sequence of forms form*, collectively referred to as the body.

When the prepared function is activated later (even if transported as object to some other activation) with some arguments, the body of the function is evaluated as if it was at the same textual position where the lambda special form is located, but in a context where the lambda variables are bound in the variable namespace with the values of the corresponding arguments. A &rest or :rest variable, if any, is bound to the list of the values of the remaining arguments. An error shall be signaled if the number of arguments received is incompatible with the specified lambda-list XE "error-id. arity-error"(error-id. arity-error).
Once the lambda variables have been bound, the body is executed. If the body is empty, nil is returned otherwise the result of the evaluation of the last form of body is returned if the body was not left by a non-local exit (see §6.7.1).

If the function receives a &rest or :rest parameter R, the list L1 to which that parameter is bound has indefinite extent. L1 is newly allocated unless the function was called with apply and R corresponds to the final argument, L2, to that call to apply (or some subtail of L2), in which case it is implementation defined whether L1 shares structure with L2.

Example:
((lambda (x y) (+ (* x x) (* y y))) 3 4)

=> 25

((lambda (x y &rest z) z) 3 4 5 6)

=> (5 6)

((lambda (x y :rest z) z) 3 4 5 6)

=> (5 6)

(funcall (lambda (x y) (- y (* x y))) 7 3)

=> -18

XE "labels"(labels ((function-name lambda-list form*)*) body-form*) -> <object>
special operator

XE "flet"(flet ((function-name lambda-list form*)*) body-form*) -> <object>
special operator

The flet and labels special forms allow the definition of new identifiers in the function namespace for function objects.

In a labels special form the scope of an identifier function-name is the whole labels special form (excluding nested scopes, if any); for the flet special form, the scope of an identifier is only the body-form*. Within these scopes, each function-name is bound to a function object whose behavior is equivalent to (lambda lambda-list form*), where free identifier references are resolved as follows:

· For a labels form, such free references are resolved in the lexical environment that was active immediately outside the labels form augmented by the function bindings for the given function-names (i.e., any reference to a function function-name refers to a binding created by the labels).

· For a flet form, free identifier references in the lambda-expression are resolved in the lexical environment that was active immediately outside the flet form (i.e., any reference to a function function-name are not visible).

During activation, the prepared labels or flet establishes function bindings and then evaluates each body-form in the body sequentially; the value of the last one (or nil if there is none) is the value returned by the special form activation.

No function-name may appear more than once in the function bindings.

Example:
(labels ((evenp (n)

            (if (= n 0)

                 t

                (oddp (- n 1))))

         (oddp (n)

            (if (= n 0)

                 nil

            (evenp (- n 1)))))

        (evenp 88))
=> t

(flet ((f (x) (+ x 3)))

(flet ((f (x) (+ x (f x))))

(f 7)))
=> 17

XE "apply"(apply function obj* list) -> <object>
function

Applies function to the arguments, obj*, followed by the elements of list, if any. It returns the value returned by function.

An error shall be signaled if function is not a function XE "error-id. domain-error"(error-id. domain-error). Each obj may be any ISLISP object. An error shall be signaled if list is not a proper list (see §1.5) XE "error-id. improper-argument-list"(error-id. improper-argument-list).
Example:
(apply (if (< 1 2) (function max) (function min))

       1 2 (list 3 4))
=> 4

(defun compose (f g)

   (lambda (:rest args)

           (funcall f (apply g args)))))
=> compose

(funcall (compose (function sqrt) (function *)) 12 75)

=> 30

XE "funcall"(funcall function obj*) -> <object>
function

Activates the specified function function and returns the value that the function returns. The ith argument (2 ( i) of funcall becomes the (i - 1)th argument of the function. funcall could have been defined using apply as follows:

(defun funcall (function :rest arguments)

   (apply function arguments))

An error shall be signaled if function is not a function XE "error-id. domain-error"(error-id. domain-error). Each obj may be any ISLISP object.

Example:
(let ((x '(1 2 3)))

     (funcall (cond ((listp x) (function car))

                    (t (lambda (x) (cons x 1)))) x))

=> 1

4.8 Defining Operators

Although the names defined by defining forms can be used throughout the current toplevel scope, the prepared toplevel forms in an ISLISP text unit are executed sequentially from left to right.

Two defining forms with the same identifier in the same namespace are not allowed in one toplevel scope.

XE "defconstant"(defconstant name form) -> <symbol>
defining operator

This form is used to define a named constant in the variable namespace of the current toplevel scope. The scope of name is the entire current toplevel scope except the body form.

Although name is globally constant, a variable binding for name can be locally established by a binding form.

The result of the evaluation of form is bound to the variable named by name. The binding and the object created as the result of evaluating the second argument are immutable. The symbol named name is returned.

Example:
(defconstant e 2.7182818284590451)
=> e

e

=> 2.7182818284590451

(defun f () e)

=> f

(f)

=> 2.7182818284590451

XE "defglobal"(defglobal name form) -> <symbol>
defining operator

This form is used to define an identifier in the variable namespace of the current toplevel scope. The scope of name is the entire current toplevel scope except the body form.

form is evaluated to compute an initializing value for the variable named name. Therefore, defglobal is used only for defining variables and not for modifying them. The symbol named name is returned.

A lexical variable binding for name can still be locally established by a binding form; in that case, the local binding lexically shadows the outer binding of name defined by defglobal.

Example:
(defglobal today 'wednesday)
=> today

today

=> wednesday

(defun what-is-today () today)
=> what-is-today

(what-is-today)

=> wednesday

(let ((what-is-today 'thursday)) (what-is-today))



=> wednesday

(let ((today 'thursday)) (what-is-today))



=> wednesday

XE "defdynamic"(defdynamic name form) -> <symbol>
defining operator

This form is used to define a dynamic variable identifier in the dynamic variable namespace. The scope of name is the entire current toplevel scope except the body form.

The symbol named name is returned.

Example:
(defdynamic *color* 'red)
=> *color*
(dynamic *color*)

=> red

(defun what-color () (dynamic *color*))

=> what-color

(what-color)

=> red

(dynamic-let ((*color* 'green)) (what-color))

=> green

XE "defun"(defun function-name lambda-list form*) -> <symbol>
defining operator

The defun-form defines function-name as an identifier in the function namespace; function-name is bound to a function object equivalent to (lambda lambda-list form*).

The scope of function-name is the whole current toplevel scope. Therefore, the definition of a function admits recursion, occurrences of function-name within the form* refer to the function being defined. The binding between function-name and the function object is immutable.

defun returns the function name which is the symbol named function-name. The free identifiers in the body form* (i.e., those which are not contained in the lambda list) follow the rules of lexical scoping.

Example:
(defun caar (x) (car (car x)))
=> caar

5 Predicates

5.1 Boolean Values

The values t and nil are called XE "boolean"booleans. t denotes true, and nil is the only value denoting false. XE "predicates"Predicates, also called XE "boolean functions"boolean functions, are functions that return t when satisfied and nil otherwise.

Any object other than nil is treated as true (not just t). When objects are treated as true or nil this way they are called XE "quasi-booleans"quasi-booleans.

t is an identifier naming the symbol t, and nil is an identifier naming the symbol nil (which is also the empty list). nil is the unique instance of the <null> class.

Like boolean functions, the and and or special forms return truth values; however, these truth values are nil when the test is not satisfied and a non-nil value otherwise. The result of and and or are quasi-booleans.

XE "t"t -> <symbol>
named constant

XE "nil"nil -> <null>
named constant

t is a named constant whose value is the symbol t itself. nil is a named constant whose value is the symbol nil itself.

5.2 Class Predicates

The following functions are one-argument class membership predicates:

basic-array*-p
floatp
integerp
stringp

basic-array-p
functionp
listp
symbolp

basic-vector-p
general-array*-p
null

characterp
general-vector-p
numberp

consp
generic-function-p
streamp

In addition, the function instancep is a two-argument predicate that tests membership in an arbitrary class.

5.3 Equality

XE "eq"(eq obj1 obj2) -> boolean
function

XE "eql"(eql obj1 obj2) -> boolean
function

eq and eql test whether obj1 and obj2 are same identical object. They return t if the objects are the same; otherwise, they return nil. Two objects are the same if there is no operation that could distinguish them (without modifying them), and if modifying one would modify the other the same way.

For eq, the consequences are implementation defined if both obj1 or obj2 are numbers or both are characters. For eql the meaning for numbers and characters is defined as follows:

· If obj1 and obj2 are numbers, eql tests whether they are direct instances of the same classes and have the same value.

· If an implementation supports positive and negative zeros as distinct values, then (eql 0.0 -0.0) returns nil. When the syntax -0.0 is read and it is interpreted as the value 0.0 then (eql 0.0 -0.0) returns t.

· If obj1 and obj2 are characters, eql tests whether they are the same character (see char=).

Example:
(eql () ())
=> t

(eq () ())
=> t

(eql '() '())
=> t

(eq '() '())
=> t

(eql 'a 'a)
=> t

(eq 'a 'a)
=> t

(eql 'a 'A)
=> t

(eq 'a 'A)
=> t

(eql 'a 'b)
=> nil

(eq 'a 'b)
=> nil

(eql 'f 'nil)
=> nil

(eq 'f 'nil)
=> nil

(eql 2 2)
=> t

(eq 2 2)
=> nil or t (implementation-defined)
(eql 2 2.0)
=> nil

(eq 2 2.0)
=> nil

(eql 100000000 100000000)
=> t

(eq 100000000 100000000)
=> nil or t (implementation-defined)
(eql 10.00000 10.0)
=> t

(eq 10.00000 10.0)
=> nil or t (implementation-defined)
(eql (cons 1 2) (cons 1 2))
=> nil

(eq (cons 1 2) (cons 1 2))
=> nil

(let ((x '(a))) (eql x x))
=> t

(let ((x '(a))) (eq x x))
=> t

(eql '(a) '(a))
=> nil or t (implementation-defined)
(eq '(a) '(a))
=> nil or t (implementation-defined)
(let ((x '(b))

      (y '(a b)))

     (eql x (cdr y)))
=> nil or t (implementation-defined)
(let ((x '(b))

      (y '(a b)))

     (eq x (cdr y)))
=> nil or t (implementation-defined)
(eql '(b) (cdr '(a b)))
=> nil or t (implementation-defined)
(eq '(b) (cdr '(a b)))
=> nil or t (implementation-defined)
(let ((p (lambda (x) x)))

     (eql p p))
=> t

(let ((p (lambda (x) x)))

     (eq p p))
=> t

(let ((x "a")) (eql x x))
=> t

(let ((x "a")) (eq x x))
=> t

(eql "a" "a")
=> nil or t (implementation-defined)
(eq "a" "a")
=> nil or t (implementation-defined)
(let ((x "")) (eql x x))
=> t

(let ((x "")) (eq x x))
=> t

(eql "" "")
=> nil or t (implementation-defined)
(eq "" "")
=> nil or t (implementation-defined)
(eql #\a #\A)
=> nil

(eq #\a #\A)
=> nil

(eql #\a #\a)
=> t

(eq #\a #\a)
=> nil or t (implementation-defined)
(eql #\space #\Space)
=> t

(eq #\space #\Space)
=> nil or t (implementation-defined)
(eql #\space #\space)
=> t

(eq #\space #\space)
=> nil or t (implementation-defined)
XE "equal"(equal obj1 obj2) -> boolean
function

This function tests whether obj1 and obj2 are isomorphic i.e., whether obj1 and obj2 denote the same structure with equivalent values. equal returns t if the test was satisfied, and nil if not.

Specifically:

If obj1 and obj2 are instances of the same class, equal returns t if they are eql. Otherwise (if they are direct instances of the same class but not eql), the result is t if one of the following cases applies:

(a) lists: either obj1 and obj2 are both the empty list (i.e., nil), or

(and (equal (car obj1) (car obj2))

(equal (cdr obj1) (cdr obj2))) holds;
(b) basic arrays:

(equal (array-dimensions obj1)

(array-dimensions obj2))

holds and for every valid reference (aref obj1 ind1 … indn)
(equal (aref obj1 ind1 … indn)

(aref obj2 ind1 … indn)) is satisfied.
Otherwise the value is nil.

obj1 and obj2 may be any ISLISP objects.

Example:
(equal 'a 'a)
=> t

(equal 2 2)
=> t

(equal 2 2.0)
=> nil

(equal '(a) '(a))
=> t

(equal '(a (b) c)

       '(a (b) c))
=> t

(equal (cons 1 2) (cons 1 2))
=> t

(equal '(a) (list 'a))
=> t

(equal "abc" "abc")
=> t

(equal (vector 'a) (vector 'a))
=> t

(equal #(a b) #(a b))
=> t

(equal #(a b) #(a c))
=> nil

(equal "a" "A")
=> nil

5.4 Logical Connectives

XE "not"(not obj) -> boolean
function

This predicate is the logical "not" (or "("). It returns t if obj is nil and nil otherwise. obj may be any ISLISP object.

Example:
(not t)
=> nil

(not '())
=> t

(not 'nil)
=> t

(not nil)
=> t

(not 3)
=> nil

(not (list))
=> t

(not (list 3))
=> nil

XE "and"(and form*) -> <object>
special operator

and is the sequential logical "and" (or "("). forms are evaluated from left to right until either one of them evaluates to nil or else none are left. If one of them evaluates to nil, then nil is returned from the and; otherwise, the value of the last evaluated form is returned. The form and is equivalent to the following:

(and) 
( 't

(and form) 
( form

(and form1 form2 … formn)
( (if form1 (and form2 … formn) 'nil)

Example:
(and (= 2 2) (> 2 1))
=> t

(and (= 2 2) (< 2 1))
=> nil

(and (eql 'a 'a) (not (> 1 2)))
=> t

(let ((x 'a)) (and x (setq x 'b)))
=> b

(let ((x nil)) (and x (setq x 'b)))
=> nil

(let ((time 10))

     (if (and (< time 24) (> time 12))

(- time 12) time))
=> 10

(let ((time 18))

     (if (and (< time 24) (> time 12))

(- time 12) time))
=> 6

XE "or"(or form*) -> <object>
special operator

or is the sequential logical "or" (or "("). forms are evaluated from left to right until either one of them evaluates to a non-nil value or else none are left. If one of them evaluates to a non-nil value, then this non-nil value is returned, otherwise nil is returned. The form or is equivalent to the following:

(or) 
( 'nil

(or form) 
( form

(or form1 form2 … formn) 
( ((lambda (var)


    (if var var (or form2 … formn)))


   form1)


where var does not occur in form2 … formn
Example:
(or (= 2 2) (> 2 1))
=> t

(or (= 2 2) (< 2 1))
=> t

(let ((x 'a)) (or x (setq x 'b)))
=> a

(let ((x nil)) (or x (setq x 'b)))
=> b

6 Control Structure

6.1 Constants

constant -> <object>
syntax

There are three kinds of constants: literals, quoted expressions, and named constants. Quoted expressions are described below.

The consequences are undefined if an attempt is made to alter the value of a constant.

The result of evaluating the literal constant constant is constant itself. Instances of the following classes are literal constants: <basic-array>, <character>, and <number>
Example:
#2A((a b c) (d e f))
=> #2A((a b c) (d e f))

#\a
=> #\a

145932
=> 145932

"abc"
=> "abc"

#(a b c)
=> #(a b c)

XE "quote"(quote obj) -> <object>
special operator

XE "’"'obj -> <object>
syntax

A quoted expression denotes a reference to an object. This notation is used to include any object in an ISLISP text.

The character ' (apostrophe or single quote) is syntax for quotation. That is, (quote a) ( 'a.

The result of the evaluation of the quote special form is obj.

Example:
(quote a)
=> a

(quote #(a b c))
=> #(a b c)

(quote (+ 1 2))
=> (+ 1 2)

'()
=> nil

'a
=> a

'#(a b c)
=> #(a b c)

'(car l)
=> (car l)

'(+ 1 2)
=> (+ 1 2)

'(quote a)
=> (quote a)

''a
=> (quote a)

(car ''a)
=> quote

The consequences are undefined if an attempt is made to alter the value of a quoted expression.

6.2 Variables

XE "variable bindings"Variable bindings are entities established during execution of the prepared variable-binding forms or by the activation of functions.

A XE "variable"variable is used to refer to an association between an identifier and an ISLISP object and is denoted by that identifier. The association can be altered (by assignment) using the setf special form or setq special form.

The following are variable binding forms:

defglobal
let
for
let*

var -> <object>
syntax

The value of var is the object associated with var in its variable binding.

Example:
(defglobal x 0)
=> x

x
=> 0

(let ((x 1)) x)
=> 1

x
=> 0

XE "setq"(setq var form) -> <object>
special operator

This form represents an assignment to the variable denoted by the identifier. In consequence, the identifier may designate a different object than before, the value of form.

The result of the evaluation of form is returned. This result is used to modify the variable binding denoted by the identifier var (if it is mutable). setq can be used only for modifying bindings, and not for establishing a variable. The setq special form must be contained in the scope of var, established by defglobal, let, let*, for, or a lambda expression.

Example:
(defglobal x 2)
=> x

(+ x 1)
=> 3

(setq x 4)
=> 4

(+ x 1)
=> 5

(let ((x 1)) (setq x 2) x)
=> 2

(+ x 1)
=> 5

XE "setf"(setf place form) -> <object>
special operator

This macro is used for generalized assignment.

setf takes a place and stores in this place the result of the evaluation of the form form. The place form is not evaluated as a whole entity, but subforms of place are evaluated sequentially from left to right to determine a place to be assigned a value. When place is denoted by an identifier, setf behaves exactly as setq. The returned value is the result of the evaluation of form. The valid places for the setf special form are as follows:

variables
var
dynamic bindings
(dynamic var)
the components of a basic-array
(aref basic-array z1 … zn)
the components of a general array
(garef general-array z1 … zn)
the components of a list
(elt list z)
the components of a vector
(elt basic-vector z)
the left component of a cons
(car cons)
the right component of a cons
(cdr cons)
a property of a symbol
(property symbol property)
a slot of an instance of a class
(reader-function-name instance)
A place can also be a macro form that expands (during preparation for execution) into a place or a function application form with operator op for which setf is defined or for which a generic function named (setf op) has been defined. In these last two cases, that function will receive as arguments the new value to be assigned followed by the objects that resulted from evaluating the arguments of the function application form.

Example:
(setf (car x) 2)
=> 2

In the cons x, the car now is 2.

(defmacro first (spot)

   `(car ,spot))
=> first

(setf (first x) 2)
=> 2


In the cons x, the car now is 2.

XE "let"(let ((var form)*) body-form*) -> <object>
special operator

The let special form is used to define a scope for a group of identifiers for a sequence of forms body-form* (collectively referred to as the body). The list of pairs (var form)* is called the let variable list. The scope of the identifier var is the body.

The body-forms are evaluated sequentially from left to right; then each variable denoted by the identifier var is initialized to the corresponding value. Using these bindings along with the already existing bindings of visible identifiers the forms are evaluated. The returned value of let is the result of the evaluation of the last body-form of its body (or nil if there is none).

No var may appear more than once in let variable list.

Note: Although this form is a special form, one can think of it as a macro whose rewriting rules are as follows:
(let () body-form*)
(
(progn body-form*)

(let ((var1 form1)
(
((lambda (var1 var2 … varn)

      (var2 form2)

     body-form*

            …

 ) form1 form2 … formn)

      (varn formn))
   body-form*)

Example:
(let ((x 2) (y 3))

     (* x y))
=> 6

(let ((x 2) (y 3))

     (let ((x 7)

           (z (+ x y)))

          (* z x)))
=> 35

(let ((x 1) (y 2))

     (let ((x y) (y x))

          (list x y)))
=> (2 1)

XE "let*"(let* ((var form)*) body-form*) -> <object>
special operator

The let* form is used to define a scope for a group of identifiers for a sequence of forms body-form* (collectively referred to as the body). The first subform (the let* variable list) is a list of pairs (var form). The scope of an identifier var is the body along with all form forms following the pair (var form) in the let* variable list.

For each pair (var form) the following is done: form is evaluated in the context of the bindings in effect at that point in the evaluation. The result of the evaluation is bound to its associated variable named by the identifier var. These variable bindings enlarge the set of current valid identifiers perhaps shadowing previous variable bindings (in case some var was defined outside), and in this enlarged or modified environment the body-forms are executed. The returned value of let* is the result of the evaluation of the last form of its body (or nil if there is none).

Note: Although this form is a special form, one can think of it as a macro whose rewriting rules are as follows:
(let* () body-form*)
(
(progn body-form*)

(let* ((var1 form1) 
(
(let ((var1 form1))

       (var2 form2)

     (let ((var2 form2))

             …

          …

       (varn formn))

          (let ((varn formn))

      body-form*)

               body-form*)…))

Example:
(let ((x 2) (y 3))

     (let* ((x 7)

            (z (+ x y)))

           (* z x)))
=> 70

(let ((x 1) (y 2))

     (let* ((x y) (y x))

           (list x y)))
=> (2 2)

6.3 Dynamic Variables

A dynamic variable is an association between an identifier var and an ISLISP object in the dynamic variable namespace. Dynamic variables implement a form of dynamic binding.

Dynamic variables are defined globally by defdynamic and are established during the execution of a prepared dynamic-let.

Dynamic variable bindings defined by defdynamic persist indefinitely whereas those established by dynamic-let are disestablished upon end of execution of this special form.

The value of a dynamic variable can be accessed by (dynamic var).

XE "dynamic"(dynamic var) -> <object>
special operator

This special form denotes a reference to the identifier denoting a dynamic variable. This special form is not allowed in the scope of a definition of var which is not done by defdynamic or dynamic-let.

During activation, the current dynamic binding of the variable var is returned that was established most recently and is still in effect. An error shall be signaled if such a binding does not exist XE "error-id. unbound-variable"(error-id. unbound-variable).
XE "setf"(setf (dynamic var) form) -> <object>
special form

XE "set-dynamic"(set-dynamic form var) -> <object>
special operator

This special form denotes an assignment to a dynamic variable. This form can appear anywhere that (dynamic var) can appear.

form is evaluated and the result of the evaluation is used to change the dynamic binding of var. An error shall be signaled if var has no dynamic value XE "error-id. unbound-variable"(error-id. unbound-variable). setf of dynamic can be used only for modifying bindings, and not for establishing them.

XE "dynamic-let"(dynamic-let ((var form)*) body-form*) -> <object>
special operator

The dynamic-let special form is used to establish dynamic variable bindings. The first subform (the dynamic-let variable list) is a list of pairs (var form). The scope of an identifier var defined by dynamic-let is the current toplevel scope. The extent of the bindings of each var is the extent of the body of the dynamic-let. The dynamic-let special form establishes dynamic variables for all vars.

References to a dynamic variable named by var must be made through the dynamic special form.

All the initializing forms are evaluated sequentially from left to right, and then the values are associated with the corresponding vars. Using these additional dynamic bindings and the already existing bindings of visible identifiers, the forms body-form* are evaluated in sequential order. The returned value of dynamic-let is that of the last body-form of the body (or nil if there is none). The bindings are undone when control leaves the prepared dynamic-let special form.

Example:
(defun foo (x)

   (dynamic-let ((y x))

           (bar 1)))
=> foo

(defun bar (x)

   (+ x (dynamic y)))
=> bar

(foo 2)
=> 3

6.4 Conditional Expressions

XE "if"(if test-form then-form [else-form]) -> <object>
special operator

The test-form is evaluated. If its result is anything non-nil, the then-form is evaluated and its value is returned; otherwise (if the test-form returned nil), the else-form is evaluated and its value is returned.

If no else-form is provided, it defaults to nil.

Example:
(if (> 3 2) 'yes 'no)
=> yes

(if (> 2 3) 'yes 'no)
=> no

(if (> 2 3) 'yes)
=> nil

(if (> 3 2) (- 3 2) (+ 3 2))
=> 1

(let ((x 7))

     (if (< x 0) x (- x)))
=> -7

XE "cond"(cond (test form*)*) -> <object>
special operator

Executing the prepared cond, the clauses (test form*) are scanned sequentially and in each case the test is evaluated; when a test delivers a non-nil value the scanning process stops and all forms associated with the corresponding clause are sequentially evaluated and the value of the last one is returned. If no test is true, then nil is returned. If no form exists for the successful test then the value of this test is returned.

cond obeys the following equivalences:

(cond)
( nil

(cond (test1) 
( (or test1
      (test2 form*2)
     (cond (test2 form*2)

...) ...))

(cond (test1 form+1) 
( (if test1
      (test1 form*2)
      (progn form+1)

...)
      (cond (test2 form*2)


             ...))

Example:
(cond ((> 3 2) 'greater)

      ((< 3 2) 'less))
=> greater

(cond ((> 3 3) 'greater)

      ((< 3 3) 'less))
=> nil

(cond ((> 3 3) 'greater)

      ((< 3 3) 'less)

      (t 'equal))
=> equal

XE "case"(case keyform ((key*) form*)* [(t form*)]) -> <object>
special operator

XE "case-using"(case-using predform keyform ((key*) form*)* [(t form*)]) -> <object>
special operator

The case and case-using special forms, called XE "case forms"case forms, provide a mechanism to execute a matching clause from a series of clauses based on the value of a dispatching form keyform.

The clause to be executed is identified by a set of keys. A key can be any object. If the keylist of the last clause is t the associated clause is executed if no key matches the keyform.

keyform is a form to be computed at the beginning of execution of the case form. If the result of evaluating keyform is equivalent to a key, then the forms, if any, in the corresponding clause are evaluated sequentially and the value of the last one is returned as value of the whole case form. case determines match equivalence by using eql; case-using match determines equivalence by using the result of evaluating predform. predform must be a boolean or quasi-boolean function that accepts two arguments, the value returned by keyform and key. If no form exists for a matching key, the case form evaluates to nil. If the value of keyform is different from every key, and there is a default clause, its forms, if any, are evaluated sequentially, and the value of the last one is the result of the case form.

The same key (as determined by the match predicate) may occur only once in a case form.

Example:
(case (* 2 3)

   ((2 3 5 7) 'prime)

   ((4 6 8 9) 'composite))
=> composite

(case (car '(c d))

   ((a) 'a)

   ((b) 'b))
=> nil

(case (car '(c d))

   ((a e i o u) 'vowel)

   ((y) 'semivowel)

   (t 'consonant))
=> consonant

(let ((char #\u))

     (case char

        ((#\a #\e #\o #\u #\i) 'vowels)

        (t 'consonants)))
=> vowels

(case-using #'= (+ 1.0 1.0)

     ((1) 'one)

     ((2) 'two)

     (t 'more))
=> two

(case-using #'string= "bar"

     (("foo") 1)

     (("bar") 2))
=> 2

6.5 Sequencing Forms

XE "progn"(progn form*) -> <object>
special operator

This special form allows a series of forms to be evaluated, where normally only one could be used.

The result of evaluation of the last form of form* is returned. All the forms are evaluated from left to right. The values of all the forms but the last are discarded, so they are executed only for their side effects. progn without forms returns nil.

Example:
(defglobal x 0)
=> x

(progn

      (setq x 5)

      (+ x 1))
=> 6

(progn

      (format (standard-output) "4 plus 1 equals ")

      (format (standard-output) "~D" (+ 4 1)))

=> nil

prints 4 plus 1 equals 5

6.6 Iteration

XE "while"(while test-form body-form*) -> <null>
special operator

Iterates while the test-form returns a true value. Specifically:

1. test-form is evaluated, producing a value Vt.

2. If Vt is nil, then the while form immediately returns nil.

3. Otherwise, if Vt is non-nil, the forms body-form* are evaluated sequentially (from left to right).

4. Upon successful completion of the body-forms*, the while form begins again with step 1.

Example:
(let ((x '()) (i 5))

     (while (> i 0) (setq x (cons i x)) (setq i (- i 1)))

     x)
=> (1 2 3 4 5)

XE "for"(for (iteration-spec*) (end-test result*) form*) -> <object>
special operator

Where:

iteration-spec ::= (var init [step])

for repeatedly executes a sequence of forms form*, called its body. It specifies a set of identifiers naming variables that will be local to the for form, their initialization, and their update for each iteration. When a termination condition is met, the iteration exits with a specified result value.

The scope of an identifier var is the body, the steps, the end-test, and the result*. A step might be omitted, in which case the effect is the same as if (var init var) had been written instead of (var init). It is a violation if more than one iteration-spec names the same var in the same for form.

The for special form is executed as follows: The init forms are evaluated sequentially from left to right. Then each value is used as the initial value of the variable denoted by the corresponding identifier var, and the iteration phase begins.

Each iteration begins by evaluating end-test. If the result is nil, the forms in the body are evaluated sequentially (for side effects). Afterwards, the step-forms are evaluated sequentially

order from left to right. Then their values are assigned to the corresponding variables and the next iteration begins. If end-test returns a non-nil value, then the result* are evaluated sequentially and the value of the last one is returned as value of the whole for macro. If no result is present, then the value of the for macro is nil.

Example:
(for ((vec (vector 0 0 0 0 0))

      (i 0 (+ i 1)))

     ((= i 5) vec)

     (setf (elt vec i) i))
=> #(0 1 2 3 4)

(let ((x '(1 3 5 7 9)))

     (for ((x x (cdr x))

          (sum 0 (+ sum (car x))))

          ((null x) sum)))
=> 25

6.7 Non-Local Exits

6.7.1 Establishing and Invoking Non-Local Exits

ISLISP defines three ways in which to perform non-local exits:

Destination Kind
Established by
Invoked by
Operation Performed

block name
block
return-from
lexical exit
tagbody tag
tagbody
go
lexical transfer of control
catch tag
catch
throw
dynamic exit
A XE "non-local exit"non-local exit, is an operation that forces transfer of control and possibly data from an invoking special form to a previously established point in a program, called the XE "destination"destination of the exit.

A XE "lexical exit"lexical exit is a non-local exit from a return-from form to a block form which contains it both lexically and dynamically, forcing the block to return an object specified in the return-from form.

A XE "dynamic exit"dynamic exit is a non-local exit from a throw form to a catch form which contains it dynamically (but not necessarily lexically), forcing the catch to return an object specified in the throw form.

A XE "lexical transfert of control"lexical transfer of control is a non-local exit from a go form to a tagged point in a tagbody form which contains it both lexically and dynamically.

When a non-local exit is initiated, any potential destination that was established more recently than the destination to which control is being transferred is immediately considered invalid.

XE "block"(block name form*) -> <object>
special operator

XE "return-from"(return-from name result-form) transfers control and data
special operator

The block special form executes each form sequentially from left to right. If the last form exits normally, whatever it returns is returned by the block form.

The name in a block form is not evaluated; it must be an identifier. The scope of name is the body form* - only a return-from textually contained in some form can exit the block. The extent of name is dynamic.

If a return-from is executed, the result-form is evaluated. If this evaluation returns normally, the value it returns is immediately returned from the innermost lexically enclosing block form with the same name.

return-from is used to return from a block. name is not evaluated and must be an identifier. A block special form must lexically enclose the occurrence of return-from; the value produced by result-form is immediately returned from the block. The return-from form never returns and does not have a value.

An error shall be signaled if an attempt is made to exit a block after it has been exited XE "error-id. control-error"(error-id. control-error); It is a violation if name is not an identifier. It is a violation if a block with a corresponding name does not exist. See §6.7.2 for other errors.

Example:
(block x

       (+ 10 (return-from x 6) 22)) ;;; Bad programming style

=> 6

(defun f1 ()

   (block b

         (let ((f (lambda () (return-from b 'exit))))

              ... ; big computation

              (f2 f))))
=> f1

(defun f2 (g)

   ... ; big computation

   (funcall g))
=> f2

(f1)
=> exit

(block sum-block

      (for ((x '(1 a 2 3) (cdr x))

            (sum 0 (+ sum (car x))))

           ((null x) sum)

           (cond ((not (numberp (car x))) (return-from sum-block 0)))))

=> 0

(defun bar (x y)

   (let ((foo #'car))

        (let ((result

                 (block bl

                       (setq foo (lambda () (return-from bl 'first-exit)))

                       (if x (return-from bl 'second-exit) 'third-exit))))

             (if y (funcall foo) nil)

             result)))
=> bar

(bar t nil)
=> second-exit

(bar nil nil)
=> third-exit

(bar nil t)
an error shall be signaled
(bar t t)
an error shall be signaled
XE "catch"(catch tag-form form*) -> <object>
special operator

XE "throw"(throw tag-form result-form) transfers control and data
special operator

The special forms catch and throw provide a facility for programming of structured non-local dynamic exits. A catch form and a throw form are said to correspond if the tag-form of the catch and the tag-form of the throw evaluate to the same object, a XE "catch tag"catch tag. A catch tag may be any object other than a number or a character; the comparison of catch tags uses eq.
The catch special form first evaluates the tag-form to produce a catch tag, and then executes each form sequentially from left to right. If execution of the forms finishes normally, whatever is returned by the last form is returned by the catch form.

Prior to execution of the forms of a catch form C0, an association between the catch tag T0 and the executing form C0 is dynamically established, upon exit from C0, the association is disestablished. If there was an outer association for the same catch tag T0, it is hidden during the execution of C0's forms; only the most recently established (i.e., innermost) association for T0 is ever visible.

If a throw special form is executed, it evaluates the tag-form producing a catch tag T1, and then evaluates the result-form producing a result R1. If there is a corresponding association between T1 and some catch form Ci that is executing, Ri is immediately returned as the value of Ci. The throw form can be anywhere in the entire current toplevel scope; it need not be lexically contained within Ci.

An error shall be signaled if there is no outstanding catcher for a T1 XE "error-id. control-error"(error-id. control-error). See §6.7.2 for other errors.

Example:
(defun foo (x)

   (catch 'block-sum (bar x)))
=> foo

(defun bar (x)

   (for ((l x (cdr l))

         (sum 0 (+ sum (car l))))

        ((null l) sum)

        (cond ((not (numberp (car l))) (throw 'block-sum 0)))))

=> bar

(foo '(1 2 3 4))
=> 10

(foo '(1 2 a 4))
=> 0

XE "tagbody"(tagbody {tagbody-tag | form}*) -> <object>
special operator

XE "go"(go tagbody-tag) transfers control
special operator

tagbody executes the forms sequentially from left to right, discarding their values. If the execution of the last form completes normally, nil is returned by the tagbody special form.

The series of tagbody-tags and forms is collectively referred to as the body of a tagbody form. An identifier tagbody-tag that appears at toplevel of the body denotes a XE "tagbody tag"tagbody tag that can be used with go to transfer control to that point in the body. Any compound form that appears is taken as a form. Literals are not permitted at the toplevel of a tagbody. No tagbody-tag may appear more than once in the tags in the body.
The namespace used for tagbody tags is distinct from that used for block tags.

At any point lexically contained in the tagbody a form (go tag) can be used to transfer control to a tag tag that appears among the tagbody-tags, except where a tagi is shadowed according to the lexical principle (see §3.1).

A tagbody-tag established by tagbody has lexical scope, but the point in the program to which it refers has dynamic extent. Once tagbody has been exited, it is no longer valid to use go to transfer to any tag in its body.

The determination of which elements of the body are tagbody-tags and which are forms is made prior to any macro expansion of that element. If form is a macro form and its macro expansion is a symbol or literal, that atom is treated as a form, not as a tagbody-tag.

It is a violation if a tagbody tag is other than an identifier. See §6.7.2 for other errors.

Note: As a stylistic matter, programmers are not encouraged to use tagbody and go in everyday programming. The primary uses for which these forms are intended are for implementing other control abstractions (using macros), and for the occassional real-world situation that uses unstructured imperative transfer of control (such as a finite state machine).
Example:
(defmacro with-retry (:rest forms)

   (let ((tag (gensym)))

       `(block ,tag

               (tagbody

                   ,tag

                   (return-from ,tag

                          (flet ((retry () (go ,tag)))

                                ,@forms))))))

=> with-retry

(let ((i -5))

     (with-retry

          ;; if-error is a hypothetical error correction function

          ;; not supplied by ISLISP.

          (if-error (sqrt (setq i (+ i 4)))

                    (retry))))

=> 1.7320508075688772

6.7.2 Assuring Data Consistency during Non-Local Exits

XE "unwind-protect"(unwind-protect form cleanup-form*) -> <object>
special operator

unwind-protect first evaluates form. Evaluation of the cleanup-forms always occurs, regardless of whether the exit is normal or non-local.

If the form exits normally yielding a value R, then if all of the cleanup-forms exit normally the value R is returned by the unwind-protect form.

If a non-local exit from form occurs, then the cleanup-forms are executed as part of that exit, and then if all of the cleanup-forms exit normally the original non-local exit continues.

The cleanup-forms are evaluated from left to right, discarding the resulting values. If execution of the cleanup-forms finishes normally, exit from the unwind-protect form proceeds as described above. It is permissible for a cleanup-form to contain a non-local exit from the unwind-protect form, subject to the following constraint:

An error shall be signaled if during execution of the cleanup-forms of an unwind-protect form, a non-local exit is executed to a destination which has been marked as invalid due to some other non-local exit that is already in progress (see §6.7.1) XE "error-id. control-error"(error-id. control-error).
Note: Because ISLISP does not specify an interactive debugger, it is unspecified whether or how error recovery can occur interactively if programmatic handling fails. The intent is that if the ISLISP processor does not terminate abnormally, normal mechanisms for non-local exit (return-from, throw, or go) would be used as necessary and would respect these cleanup-forms.
Example:
(defun foo (x)

   (catch 'duplicates

          (unwind-protect (bar x)

                 (for ((l x (cdr l)))

                      ((null l) 'unused)

                      (remove-property (car l) 'label)))))

=> foo

(defun bar (l)

   (cond ((and (symbolp l) (property l 'label))

          (throw 'duplicates 'found))

         ((symbolp l) (setf (property l 'label) t))

         ((bar (car l)) (bar (cdr l)))

         (t nil)))

=> bar

(foo '(a b c))
=> t

(property 'a 'label)
=> nil

(foo '(a b a c))
=> found

(property 'a 'label)
=> nil

(defun test ()

   (catch 'outer (test2)))
=> test

(defun test2 ()

   (block inner

          (test3 (lambda ()

                    (return-from inner 7)))))

=> test2

(defun test3 (fun)

   (unwind-protect (test4) (funcall fun)))

=> test3

(defun test4 ()

   (throw 'outer 6))
=> test4

(test)
=> an error shall be signaled

In the test example, the throw executed in test4 has as destination the catcher established in test. The unwind-protect in test3 intercepts the transfer of control and attempts to execute a return-from from the block in test2. Because this block is established within the dynamic extent of the destination catcher, an error is signaled.

7 Objects

7.1 Defining Classes

The defclass defining form is used to define a new named class.

The definition of a class includes the following:

· The name of the new class.

· The list of the direct superclasses of the new class.

· A set of XE "slot specifiers"slot specifiers. Each slot specifier includes the name of the slot and zero or more XE "slot options"slot options. A slot option pertains only to a single slot. A class definition must not contain two slot specifiers with the same name.

· A set of XE "class options"class options. Each class option pertains to the class as a whole.

The slot options and class options of the defclass defining form provide mechanisms for the following:

· Supplying a default initial value form for a given slot.

· Requesting that methods for generic functions be automatically generated for retrieving or storing slot values and inquiring whether a value is bound to the slot.

· Indicating that the metaclass of that class is to be other than the default.

XE "defclass"(defclass class-name (sc-name*) (slot-spec*) class-opt*) -> <symbol>
defining operator

Where:

class-name
::= identifier
sc-name
::= identifier
slot-spec
::= slot-name | (slot-name slot-opt*)

slot-name
::= identifier
slot-opt
::= XE ":reader":reader reader-function-name |


    XE ":writer":writer writer-function-name |


    XE ":accessor":accessor reader-function-name |


    XE ":boundp":boundp boundp-function-name |


    XE ":initform":initform form |


    XE ":initarg":initarg initarg-name
initarg-name
::= identifier
reader-function-name
::= identifier
writer-function-name
::= identifier
boundp-function-name
::= identifier
class-opt
::= XE ":metaclass" (:metaclass class-name) |


    XE ":abstractp" (:abstractp abstract-flag)

abstract-flag
::= t | nil

The defclass defining form returns the symbol named class-name as its result.

The class-name argument is an identifier which becomes the name of the new class. The defining point of the class-name is the end of the defclass defining form.

Each superclass name argument sc-name is an identifier that specifies a direct superclass of the new class. The new class will inherit slots and their :reader or :writer or :accessor methods from each of its superclasses. See §7.1.3 for a definition of how slots are inherited, and §7.2.3 for a definition of how methods are inherited. No sc-name may appear more than once in super class names. It is a violation if the superclasses of any two direct superclasses sc-name have superclasses other than <standard-object> and <object> in common unless a metaclass other than <standard-class> is specified.

Each slot-spec argument is the name of the slot or a list consisting of the slot name followed by zero or more slot options. The slot-name argument is an identifier that is syntactically valid for use as an ISLISP variable name. No slot names may appear more than once in slot-spec

The following slot options are available:

· The :reader slot option specifies that an unqualified method with the parameter profile ((x class-name)) is to be defined on the generic function named reader-function-name to retrieve the value of the given slot. The :reader slot option may be specified more than once for a given slot.

· The :writer slot option specifies that an unqualified method with the parameter profile ((y <object>) (x class-name)) is to be defined on the generic function named writer-function-name to store the value into the slot. The writer-function-name argument is an identifier. The :writer slot option may be specified more than once for a given slot.

· The :accessor slot option specifies that an unqualified method is to be defined on the generic function named reader-function-name to retrieve the value of the given slot. Furthermore, there is a generic function such that (setf (reader-function-name x) y) is equivalent to calling this generic function with first argument y and second argument x. This generic function is extended by a method with the parameter profile ((y <object>) (x class-name)). The reader-function-name argument is an identifier. The :accessor slot option may be specified more than once for a given slot.

· The :boundp slot option specifies that an unqualified method with the parameter profile ((x class-name)) is to be defined on the generic function named boundp-function-name to test whether the given slot has been given a value. The :boundp slot option may be specified more than once for a given slot.

· The :initform slot option is used to provide a default initial value form to be used in the initialization of the slot. The :initform slot option may be specified once at most for a given slot. This form is evaluated every time it is used to initialize the slot. The lexical scope of the identifiers used in the initialization of the slot is the lexical scope of those identifiers in the defclass form. Note that the lexical scope refers both to variable and to function identifiers. In contrast, the current dynamic bindings used are those existing during activation of create. For more information, see §7.4.1.

· The :initarg slot option declares an initialization argument named initarg-name and specifies that this initialization argument initializes the given slot. If the initialization argument and associated value are supplied in the call to initialize-object, the value will be stored into the given slot and the slot's :initform slot option, if any, is not evaluated. If none of the initialization arguments specified for a given slot has a value, the slot is initialized according to the :initform option, if specified. The consequences are undefined if more than one initialization argument for the same slot is supplied. For more information, see §7.4.1.

The generic functions, to which the methods created by the :reader, :writer, and :accessor slot options belong are called XE "slot accessors"slot accessors.

No implementation is permitted to extend the syntax of defclass to allow (slot-name form) as an abbreviation for (slot-name :initform form).

Each class option is an option that refers to the class as a whole. The following class options are available:

· The :metaclass class option is used to specify that instances of the class being defined are to have a different metaclass than the default provided by the system, that is, different from the class <standard-class>. The class-name argument is the name of the desired metaclass. The :metaclass class option may be specified once at most. It is a violation if <built-in-class> is specified as the metaclass.

· The :abstractp class option is used to specify that the class is an abstract class. If this option is supplied and abstract-flag is t, create will signal an error if an attempt is made to create an instance of this class. If the option is unsupplied, or if abstract-flag is nil, the class is not an abstract class. It is a violation if the abstract-flag is supplied but is neither t nor nil.

The following rules of defclass hold for standard classes:

· The defclass defining form must be in the scope of any superclass identifier it refers to.

· All the superclasses of a class must be defined before an instance of the class can be made.

· Any reference to class-name as a parameter specializer in a defmethod form must be in the scope of class-name. That is, a defmethod form that names a class must textually follow the defclass form that defines that class.

An ISLISP processor may be extended to cover situations where these rules are not obeyed. These extensions shall be implementation defined.

Some slot options are inherited by a class from its superclasses, and some can be shadowed or altered by providing a local slot description. No class options are inherited. For a detailed description of how slots and slot options are inherited, see the section §7.1.3.

If no slot accessors are specified for a slot, the slot cannot be accessed.

When a class is defined, the order in which its direct superclasses are mentioned in the defining form is important. The new class has a XE "local precedence order"local precedence order, which is a list consisting of the class followed by its direct superclasses in the order mentioned in its defclass defining form.

7.1.1 Determining the Class Precedence List

The defclass defining form for a class provides a total ordering on that class and its direct superclasses. This ordering is called the local precedence order. It is an ordered list of the class and its direct superclasses. The XE "class precedence list"class precedence list for a class C is a total ordering on C and its superclasses that is consistent with the local precedence orders for each of C and its superclasses.

The class precedence list is always consistent with the local precedence order of each class in the list. The classes in each local precedence order appear within the class precedence list in the same order.

Let C1, … , Cn be the direct superclasses of C in the order defined in the defclass defining form for C. Let P1, … , Pn be the class precedence lists for C1, … , Cn, respectively. Define P … Q on class precedence lists P and Q to be the two lists appended. Then the class precedence list for C is C … P1. . ...Pn with duplicate classes removed by repeated application of the following rule: If a class appears twice in the resulting class precedence list, the leftmost occurrence is removed.

It is a violation if an attempt is made to define an instance of <standard-class> whose direct superclasses have class precedence lists with classes other than <standard-object> and <object> in common.

7.1.2 Accessing Slots

Slots can be accessed by use of the slot accessors created or modified by the defclass defining form.

The defclass defining form provides syntax for generating methods to retrieve and store slot values. If a XE "reader"reader is requested, a method is automatically generated for retrieving the value of the slot, but no method for storing a value into it is generated. If a XE "writer"writer is requested, a method is automatically generated for storing a value into the slot, but no method for retrieving its value is generated. If an XE "accessor"accessor is requested, a method for retrieving the value of the slot and a method for storing a value into the slot are automatically generated.

When a reader or writer is specified for a slot, the name of the generic function to which the generated method belongs is directly specified. If the name specified for the writer option is the identifier name, the name of the generic function for storing a value into the slot is the identifier name, and the generic function takes two arguments: the new value and the instance, in that order. If the name specified for the accessor option is the identifier name, the name of the generic function for retrieving the slot value is the identifier name, and storing a value into the slot can be done by using the syntax (setf (name instance) new-value).

A generic function created or modified by supplying reader, writer, or accessor slot options is a direct instance of <standard-generic-function>.

7.1.3 Inheritance of Slots and Slot Options

The set of the names of all slots accessible in an instance of a class C is the union of the sets of names of slots defined by C and its superclasses. The XE "structure"structure of an instance is the set of names of slots in that instance.

In the simplest case, only one class among C and its superclasses defines a slot with a given slot name. If a slot is defined by a superclass of C, the slot is said to be XE "inherited"inherited. The characteristics of the slot are determined by the slot specifier of the defining class.

In general, more than one class among C and its superclasses can define a slot with a given name. In such cases, only one slot with the given name is accessible in an instance of C, and the characteristics of that slot are a combination of the several slot specifiers, computed as follows:

· All the slot specifiers for a given slot name are ordered from most specific to least specific, according to the order in C's class precedence list. All references to the specificity of slot specifiers immediately below refer to this ordering.

· The default initial value form for a slot is the value of the :initform slot option in the most specific slot specifier that contains one. If no slot specifier contains an :initform slot option, the slot has no default initial value form.

The :reader, :writer, and :accessor slot options create methods rather than define the characteristics of a slot. Reader and writer methods are inherited in the sense described in the section §7.2.3.

7.2 Generic Functions

A XE "generic function"generic function is a function whose application behavior depends on the classes of the arguments supplied to it. A generic function object contains a set of methods, a lambda-list, a method combination type, and other information. The methods define the class-specific behavior

and operations of the generic function; a method is said to XE "specialize"specialize a generic function. When invoked, a generic function executes a subset of its methods based on the classes of its arguments.

A generic function can be used in the same ways that an ordinary function can be used.

A XE "method"method consists of a method function, a lambda list, a sequence of XE "parameter specializers"parameter specializers that specify when the given method is applicable, and a sequence of XE "qualifiers"qualifiers that is used by the method combination facility to distinguish among methods. Each required formal parameter of each method has an associated parameter specializer, and the method is invoked only on arguments that satisfy its parameter specializers.

The method combination facility controls the selection of methods, the order in which they are activated, and the value that is returned by the generic function. ISLISP provides a default method combination type but does not provide a facility for declaring new types of method combination.

Like an ordinary ISLISP function, a generic function takes arguments, performs a series of operations, and returns a value. An ordinary function has a single body of code that is always executed when the function is called. A generic function has a set of bodies of code of which a non-empty subset is selected for execution. The selected bodies of code and the manner of their combination are determined by the classes of the arguments to the generic function and by its method combination type.

XE "generic-function-p"(generic-function-p obj) -> boolean
function

Returns t if obj is a generic function; otherwise, returns nil. obj may be any ISLISP object.

7.2.1 Defining Generic Functions

Some forms specify the options of a generic function, such as the type of method combination it uses. These forms will be referred to as "forms that specify generic function options." These forms are the defgeneric defining forms.

Some forms define methods for a generic function. These forms will be referred to as "method-defining forms." These forms are the defmethod and defclass defining forms.

During preparation for execution, a defmethod form must be preceded by the defgeneric form for the generic function to be specialized. (Methods implicitly defined by defclass due to :reader, :writer, or :accessor options do not need a preceding defgeneric.)

XE "defgeneric"(defgeneric func-spec lambda-list {option | method-desc}*) -> <symbol>
defining operator

Where:

func-spec
::= identifier | (setf identifier)

lambda-list
::= (var* [&rest var]) |


    (var* [:rest var])

option
::= XE ":method-combination"(:method-combination identifier) |


    XE ":generic-function-class"(:generic-function-class class-name)

method-desc
::= XE ":method "(:method method-qualifier*

             parameter-profile form*)

method-qualifier
::= identifier | keyword

parameter-profile
::= ({var | (var parameter-specializer-name)}* [{XE "&rest"&rest | XE ":rest":rest} var])

parameter-specializer-name
::= class-name

class-name
::= identifier

var
::= identifier

The defgeneric defining form is used to define a generic function and to specify options and declarations that pertain to a generic function as a whole.

It returns the generic function name func-spec.

The scope of the generic function identifier func-spec is the entire current toplevel scope.

The lambda-list argument is an ordinary function lambda-list.

The following options are provided. A given option may occur only once.

· The :generic-function-class option specifies that the generic function is to have a different class from the default provided by the system, that is, different from the class <standard-generic-function>. The class-name argument is the name of a class that can be the class of a generic function.

· The :method-combination option is followed by a symbol or keyword that names a type of method combination. The names of the built-in method combination types are nil and standard.

The method-desc arguments define methods that will belong to the generic function, as if defined by defmethod. The method-qualifier and parameter-profile arguments in a method description are the same as for defmethod. The form arguments specify the method body.

If no method descriptions are specified, a generic function with no methods is created. An error shall be signaled if a generic function is called and no methods apply.

The lambda-list argument of defgeneric specifies the shape of lambda-lists for the methods on this generic function. All methods on the resulting generic function must have parameter-profiles that are congruent with this shape. For further details on method congruence, see §7.2.2.2.

Implementations can extend defgeneric to include other implementation-defined options.

7.2.2 Defining Methods for Generic Functions

XE "defmethod"(defmethod func-spec method-qualifier* parameter-profile form*) -> <symbol>
defining operator

Where:

func-spec
::= identifier | (setf identifier)

method-qualifier
::= identifier | keyword
parameter-profile
::= ({var | (var parameter-specializer-name)}* [{XE "&rest"&rest | XE ":rest":rest} var])

parameter-specializer-name
::= class-name

class-name
::= identifier

var
::= identifier

The defmethod defining form defines a method on a generic function. It returns the generic function name func-spec.

A method-defining form contains the code that is to be executed when the arguments to the generic function cause the method that it defines to be invoked.

Preparing a method-defining form for execution causes one of the following cases:

· It is a violation if the given name func-spec already designates a generic function and this generic function contains a method that agrees with the new one on parameter specializers and qualifiers. For a definition of one method agreeing with another on parameter specializers and qualifiers, see the section §7.2.2.1.

· If the given name func-spec designates a generic function and this generic function does not contain a method that agrees with the new one on parameter specializers and qualifiers, the new method is added to the generic function.

· It is a violation if the defmethod defining form is in the scope of a func-spec identifier that does not designate a generic function.

· It is a violation if the given name func-spec does not exist in the current toplevel scope immediately containing the defmethod defining form. Furthermore, it is a violation if a defgeneric form for func-spec does not precede the method-defining form in the text unit being prepared for execution unless the method-defining form is a defclass.

The parameter-profile of the method being defined must be congruent with the lambda-list of the generic function. See §7.2.2.2 for a definition of congruence in this context.

Each method-qualifier argument is an object that is used as an attribute to the given method by method combination. A method qualifier is a non-nil symbol or keyword. The method combination type further restricts what a method qualifier may be. The standard method combination type allows for unqualified methods or methods whose sole qualifier is one of the keywords XE ":before":before, XE ":after":after, XE ":around":around.

The parameter-profile argument is like an ordinary function lambda-list except that the names of required parameters can be replaced by specialized parameters. A specialized parameter is a list of the form (variable-name parameter-specializer-name). Only required parameters may be specialized. A parameter specializer name is an identifier that names a class. If no parameter specializer name is specified for a given required parameter, the parameter specializer defaults to the class named <object>.

The form arguments specify the method body.

No two methods with agreeing parameter specializers and qualifiers may be defined for the same generic function. See the section §7.2.2.1 for a definition of agreement in this context.

A method is not a function and cannot be invoked as a function.

7.2.2.1 Agreement on Parameter Specializers and Qualifiers

Two methods are said to agree with each other on parameter specializers and qualifiers if the following conditions hold:

1. Both methods have the same number of required parameters. Suppose the parameter specializers of the two methods are P1,1 … P1,n and P2,1 … P2,n.

2. For each 1 ≤ i ≤ n, P1,i agrees with P2,i. The parameter specializer P1,i agrees with P2,i if P1,i and P2,i denote the same class. Otherwise P1,i and P2,i do not agree.

3. The qualifiers of both methods, if any, are the same.

The parameter specializers are derived from the parameter profiles described above.

7.2.2.2 Congruent Lambda-Lists for all Methods of a Generic Function

These rules define the congruence of a set of lambda-lists, including the parameter profile of each method for a given generic function and the lambda-list specified for the generic function itself, if given.

1. Each lambda-list must have the same number of required parameters.

2. If any lambda-list mentions &rest or :rest, each lambda-list must mention &rest or :rest.

7.2.3 Inheritance of Methods

A subclass inherits methods in the following sense: Any method applicable to all instances of a class is also applicable to all instances of any subclass of that class, since they are also instances of that class.

The inheritance of methods acts the same way regardless of whether the method was created by using the defmethod form or by using one of the defclass options that causes methods to be generated automatically.

7.3 Calling Generic Functions

When a generic function is called with particular arguments, it must determine the code to execute. This code is called the XE "effective method"effective method for those arguments. The effective method is a XE "combination"combination of the applicable methods in the generic function, which might be some or all of the defined methods. An error shall be signaled if a generic function is called and no methods apply.

When the effective method has been determined, it is invoked with the same arguments that were passed to the generic function. Whatever value it returns is returned as the value of the generic function.

The effective method is determined by the following three-step procedure:

1. Select the applicable methods.

2. Sort the applicable methods by precedence order, putting the most specific method first.

3. Apply applicable methods according to the method combination.

7.3.1 Selecting the Applicable Methods

Given a generic function and a set of arguments, an XE "applicable method"applicable method is a method for that generic function whose parameter specializers are satisfied by their corresponding arguments. The following definition specifies what it means for a method to be applicable and for an argument to satisfy a parameter specializer.

Let <A1, … , An> be the required arguments to a generic function in order. Let <P1, … , Pn> be the parameter specializers corresponding to the required parameters of the method M in order. The method M is XE "applicable"applicable when each Ai XE "satisfies"satisfies Pi. If Ai is an instance of a class C, then it is said that Ai satisfies Pi when C = Pi or when C is a subclass of Pi.

A method all of whose parameter specializers are the class named <object> is called a XE "default method"default method; it is always applicable but might be shadowed by a more specific method.

Methods can have XE "qualifiers"qualifiers, which give the method combination procedure a way to distinguish among methods. A method that has one or more qualifiers is called a XE "qualified method"qualified method. A method with no qualifiers is called an XE "unqualified method"unqualified method. Any object after :method and before the first list in method-desc is regarded as a qualifier, but only non-nil symbols and :keywords are accepted as qualifiers. The qualifiers defined by standard method combination are keywords.

7.3.2 Sorting the Applicable Methods

To compare the precedence of two methods, their parameter specializers are examined in order. The examination order is from left to right.

The corresponding parameter specializers from each method are compared. When a pair of parameter specializers are equal, the next pair are compared for equality. If all corresponding parameter specializers are equal, the two methods must have different qualifiers; in this case, either method can be selected to precede the other.

If some corresponding parameter specializers are not equal, the first pair of parameter specializers that are not equal determines the precedence. The more specific of the two methods is the method whose parameter specializer appears earlier in the class precedence list of the corresponding argument. Because of the way in which the set of applicable methods is chosen, the parameter specializers are guaranteed to be present in the class precedence list of the class of the argument.

The resulting list of applicable methods has the most specific method first and the least specific method last.

7.3.3 Applying Methods

In general, the effective method is some combination of the applicable methods. It is defined by a form that contains calls to some or all of the applicable methods, returns the value that will be returned as the value of the generic function, and optionally makes some of the methods accessible by means of call-next-method. This form is the body of the effective method; it is augmented with an appropriate lambda-list to make it a function.

The role of each method in the effective method is determined by its method qualifiers and the specificity of the method. A qualifier serves to mark a method, and the meaning of a qualifier is determined by the way that these marks are used by this step of the procedure. An error shall be signaled if an applicable method has an unrecognized qualifier.

ISLISP provides two method combination types. To specify that a generic function is to use one of these method combination types, the name of the method combination type is given as the argument to the :method-combination option to defgeneric.

The names of the method combination types are nil and XE "standard"standard.

7.3.3.1 Simple Method Combination

In the simple case - the nil method combination type where all applicable methods are primary methods - the effective method calls the most specific method. That method can call the next most specific method by using call-next-method. The method that call-next-method calls is referred to as the XE "next method"next method. The predicate next-method-p tests whether a next method exists. An error shall be signaled if call-next-method is called and there is no next most specific method.

7.3.3.2 Standard Method Combination

Standard method combination is used if no other type of method combination is specified or if the method combination standard is specified.

XE "primary methods"Primary methods define the main action of the effective method, while XE "auxiliary methods"auxiliary methods modify that action in one of three ways. A primary method has no method qualifiers. An auxiliary method is a method whose method qualifier is :before, :after, or :around.

· A :before method has the keyword :before as its qualifier. A :before method specifies code that is to be run before any primary methods.

· An :after method has the keyword :after as its qualifier. An :after method specifies code that is to be run after primary methods.

· An :around method has the keyword :around as its qualifier. An :around method specifies code that is to be run instead of other applicable methods but which is able to cause some of them to be run.

The semantics of standard method combination is as follows:

· If there are any :around methods, the most specific :around method is called. It supplies the value of the generic function.

· Inside the body of an :around method, call-next-method can be used to call the next method. When the next method returns, the :around method can execute more code, perhaps based on the returned value. An error shall be signaled if call-next-method is used and there is no applicable method to call. The function next-method-p can be used to determine whether a next method exists.

· If an :around method invokes call-next-method, the next most specific :around method is called, if one is applicable. If there are no :around methods or if call-next-method is called by the least specific :around method, the other methods are called as follows:

· All the :before methods are called, in most-specific-first order. Returned values are ignored. An error shall be signaled if call-next-method is used in a :before method.

· The most specific primary method is called. Inside the body of a primary method, the form call-next-method can be used to call the next most specific primary method. When that method returns, the previous primary method can execute more code, perhaps based on the returned value. An error shall be signaled if call-next-method is used and there are no more applicable primary methods. The next-method-p function can be used to determine whether a next method exists. If call-next-method is not used, only the most specific primary method is called.

· All the :after methods are called in most-specific-last order. Returned values are ignored. An error shall be signaled if call-next-method is used in an :after method.

· If no :around methods were invoked, the most specific primary method supplies the value returned by the generic function. The value returned by the invocation of call-next-method in the least specific :around method is that returned by the most specific primary method.

An error shall be signaled if there is an applicable method but no applicable primary method while using standard method combination.

The :before methods are run in most-specific-first order while the :after methods are run in least-specific-first order. The design rationale for this difference can be illustrated with an example. Suppose class C1 modifies the behavior of its superclass, C2, by adding :before and :after methods. Whether the behavior of the class C2 is defined directly by methods on C2 or is inherited from its superclasses does not affect the relative order of invocation of methods on instances of the class C1. Class C1's :before method runs before all of class C2's methods. Class C1's :after method runs after all of class C2's methods.

By contrast, all :around methods run before any other methods run. Thus a less specific :around method runs before a more specific primary method.

If only primary methods are used and if call-next-method is not used, only the most specific method is invoked; that is, more specific methods shadow more general ones.

7.3.4 Calling More General Methods

XE "call-next-method"(call-next-method) -> <object>
local function

The call-next-method function can be used within the body of a method to call the next method.

It returns the value returned by the method it calls.

The type of method combination used determines which methods can invoke call-next-method and what is the next method to be called.

In the case of simple method combination where the method combination type is nil the next method is the next most specific method.

The standard method combination type allows call-next-method to be used within primary methods and :around methods. The standard method combination type defines the next method as defined in §7.3.3.2.

call-next-method passes the current method's original arguments to the next method. Neither using setq nor rebinding variables with the same names as parameters of the method affects the values call-next-method passes to the method it calls. The call-next-method function returns the value returned by the method it calls. After call-next-method returns, further computation is possible. The next-method-p function can be used to test whether there is a next method.

The functional binding of call-next-method is lexical within the body of the method-defining form; i.e., it is as if it were established by labels. The function object to which the binding refers has indefinite extent.

An error shall be signaled if call-next-method is used in methods that do not support it. An error shall be signaled if call-next-method is executed and there is no next method.

XE "next-method-p"(next-method-p) -> boolean
local function

The next-method-p function can be used within the body of a method defined by a method-defining form to determine whether a next method exists. The next-method-p function takes no arguments and returns t or nil.

The functional binding of next-method-p is lexical within the body of the method-defining form; i.e., it is as if it were established by labels. The function object to which the binding refers has indefinite extent.

7.4 Object Creation and Initialization

XE "create"(create class {initarg initval}*) -> <object>
generic function

The function create creates and returns a new instance of a class. The argument is a class object.

The initialization of a new instance consists of several distinct steps, including the following: allocating storage for the instance, filling slots with values, and executing user-supplied methods that perform additional initialization. The last two steps of create are implemented by the generic function initialize-object to provide a mechanism for customizing those steps. The initialization arguments (the initargs and initvals) are given as a single list argument to initialize-object. The instance returned by create is the new instance, which has been modified and returned by initialize-object.

7.4.1 Initialize-Object

The generic function initialize-object is called by create to initialize a newly created instance. It uses standard method combination. Methods for initialize-object can be defined on user-defined classes in order to augment or override the system-supplied slot-filling mechanisms (described below).

During initialization, initialize-object is invoked after a new instance whose slots are unbound has been created.

The generic function initialize-object is called with the new instance. There is a system-supplied primary method for initialize-object whose parameter specializer is the class <standard-object>. This method fills in the slots according to the initialization arguments provided and according to the :initform forms for the slots as follows:

· If the slot already has a value, no attempt is made to change that value.

· If an initialization argument and value pair for the slot was provided among the initialization arguments, the slot is initialized with the value from that pair. The name of the initialization argument for a slot is declared by the :initarg option to slots in defclass. The consequences are undefined if more than one initialization argument for the same slot is supplied.

· If the slot has a default initial value form (see defclass), that form is evaluated in the lexical environment in which that form was established and in the current dynamic environment. The result of the evaluation is an object which becomes the value of the slot.

· Otherwise, the slot is left uninitialized.

XE "initialize-object"(initialize-object instance initialization-arguments) -> <object>
generic function

The generic function initialize-object is called by create to initialize a newly created instance. The generic function initialize-object is called with the new instance and a list of initialization arguments.

The system-supplied primary method on initialize-object initializes the slots of the instance with values according to the initialization-arguments (an alternating list of initialization argument keywords and values) and the :initform forms of the slots.

The instance argument is the object to be initialized. The modified instance is returned as the result. Programmers can define methods for initialize-object to specify actions to be taken when an instance is initialized. If only :after methods are defined, they will be run after the system-supplied primary method for initialization and therefore will not interfere with the default behavior of initialize-object. The consequences are undefined if a programmer-defined primary method for this generic function does not return instance.

7.5 Class Enquiry

XE "class-of"(class-of obj) -> <class>
function

Returns the class of which the given obj is a direct instance. obt may be any ISLISP object.

XE "instancep"(instancep obj class) -> boolean
function

Returns t if obj is an instance (directly or otherwise) of the class class; otherwise, returns nil obj may be any ISLISP object. An error shall be signaled if class is not a class object XE "error-id. domain-error"(error-id. domain-error).
XE "subclassp"(subclassp class1 class2) -> boolean
function

Returns t if the class class1 is a subclass of the class class2; otherwise, returns nil. An error shall be signaled if either class1 or class2 is not a class object XE "error-id. domain-error"(error-id. domain-error).
XE "class"(class class-name) -> <class>
special operator

Returns the class object that corresponds to the class named class-name.

8 Macros

Macros are a feature to extend the language syntactically. A macro is an abstraction for surface transformations. Because ISLISP texts (e.g., function definitions) can be represented internally by objects in ISLISP, the surface transformations can be described by means of list processing. Forms are represented by conses or other objects and a macro describes a transformation function from one group of objects onto another.

Macros can be internally defined by XE "expander"expander functions which implement the transformation from one group of objects to another. The operation of an expander functions is specified by a defmacro defining form.

An expander receives a form as argument and returns a different form as value. The primary activity of an expander is to create sets of nested lists; for this purpose, the backquote facility is provided.

Macros are expanded at preparation time. No runtime information is available.

The set of usable operations is restricted to simple data structure creation and manipulation; those operations are forbidden that cause side-effects to the environment (such as I/O to the terminal), to externally accessible data structure (such as a modification to the property list of a symbol), or to the macro form itself.

Macro definitions are allowed only at toplevel. Redefinition (i.e., multiple definition) of macros is forbidden. A macro's definition must textually precede any use of that macro during preparation for execution.

The result of expanding a macro form is another form. If that form is a macro form, it is expanded by the same mechanism until the result is not a macro form.

When a toplevel form is a macro form, its resulting macro expansion is also considered to be a toplevel form.

A macro form can appear as the place specified in a setf special form. See setf on page 31.

XE "defmacro"(defmacro macro-name lambda-list form*) -> <symbol>
defining operator

Defines a named (toplevel) macro. No implicit block with the macro name is established when the macro-expansion function is invoked. macro-name must be an identifier whose scope is the current toplevel scope in which the defmacro form appears. lambda-list is as defined in page 20. The definition point of macro-name is the closing parenthesis of the lambda-list.

Example:
(defmacro caar(x) (list 'car (list 'car x)))

=> caar

XE "`"`form -> <object>
syntax

XE ",",form -> <object>
syntax

XE ",@",@form -> <object>
syntax

`
or XE "quasiquote"quasiquote constructs a list structure. quasiquote, like quote, returns its argument unevaluated if no commas or the syntax , (unquote) or ,@ (unquote-splicing) appear within the form.

,
(unquote) syntax is valid only within ` (quasiquote) expressions. When appearing within a quasiquote the form is evaluated and its result is inserted into the quasiquote structure instead of the unquote form.

,@
(unquote-splicing) is also syntax valid only within ` expressions. When appearing within a quasiquote the expression form must evaluate to a list. The elements of the list are spliced into the enclosing list in place of the unquote-splicing form sequence.

Quasiquote forms may be nested. Substitutions are made only for unquoted expressions appearing at the same nesting level, which increases by one inside each successive quasiquotation and decreases by one inside each unquotation.

Example:
`(list ,(+ 1 2) 4)

=> (list 3 4)

(let ((name 'a)) `(list name ,name ',name))

=> (list name a (quote a))

`(a ,(+ 1 2) ,@(create-list 3 'x) b)

=> (a 3 x x x b)

`((foo ,(- 10 3)) ,@(cdr '(c)) . ,(car '(cons)))

=> ((foo 7) . cons)

`(a `(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)

=> (a `(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((name1 'x)

      (name2 'y))

    `(a `(b ,,name1 ,',name2 d) e))

=> (a `(b ,x ,'y d) e)

9 Declarations and Coercions

XE "the"(the class-name form) -> <object>
special operator

XE "assure"(assure class-name form) -> <object>
special operator

These forms evaluate form. If form returns, the returned value is returned by the the or assure form. In addition, these forms specify that the value of form is of the class specified by class-name (which must be the name of an existing class).

In a the special form, the consequences are undefined if the value of form is not of the class or a subclass of the class designated by class-name. In an assure special form, an error shall be signaled if the value of form is not of the class or a subclass of the class designated by class-name XE "error-id. domain-error"(error-id. domain-error).
Example:
(the <integer> 10)
=> 10

(the <number> 10)
=> 10

(the <float> 10)
the consequences are undefined
(assure <integer> 10)
=> 10

(assure <number> 10)
=> 10

(assure <float> 10)
an error shall be signaled
XE "convert"(convert obj class-name) -> <object>
special operator

Returns an object of class class-name which corresponds to the object obj according to one of the following projections, called a XE "coercion function"coercion function. The table shows obj along the left-hand column and class-name along the top row (with <>'s in class names omitted here only for textual brevity):

	
	character
	integer
	float
	symbol
	string
	general-vector
	list

	character
	=
	I
	-
	I(3)
	-(4)
	-
	-

	integer
	I
	=
	X
	-
	X(5)
	-
	-

	float
	-
	-(1)
	=
	-
	X(6) -
	-
	

	symbol
	-
	-
	-
	=
	I(3)
	-
	-

	string
	-
	X(2)
	X(2)
	I(3)
	=
	X(7)
	X

	general-vector
	-
	-
	-
	-
	-
	=
	X

	list
	-
	-
	-
	-
	-
	X
	=


Legend:

= This is the identity function

X This coercion shall be provided

X(2)
An error shall be signaled if this coercion is attempted and the string does not contain the textual representation of a number of the target class. In all other respects, this is the same as parse-number.

X(5)
This may be the same as the ~D format directive.

X(6)
This may be the same as the ~G format directive.

X(7)
This is the identity if strings are vectors in the implementation.

I This coercion shall be provided, but its definition is implementation defined.

I(3)
This coercion shall be provided, but its definition is implementation defined. The coercion depends on the implementation's neutral alphabetic characters (see §10.1.2).

- An error shall be signaled if this coercion is attempted.

-(1)
Programmers requiring this kind of functionality may wish to consider instead using one of the functions, floor, ceiling, round, or truncate.

-(4)
programmers requiring this kind of functionality may wish to consider instead using the following: (create-string 1 obj)
If an implementation provides implementation-defined classes, it may also provide implementation-defined coercions for the names of those classes using convert.

Example:
(convert 3 <float>)
=> 3.0

(convert "abc" <general-vector>)
=> #(#\a #\b #\c)

(convert #(a b) <list>)
=> (a b)

10 Symbol class

A symbol (an instance of class <symbol>) is an object. Symbols can be XE "named"named or XE "unnamed"unnamed. A symbol's name is sometimes called a XE "print name"print name because it is used to identify the symbol during reading and printing. Symbols can have associated XE "properties"properties.

XE "symbolp"(symbolp obj) -> boolean
function

Returns t if obj is a symbol (instance of class <symbol>); otherwise, returns nil. The obj may be any ISLISP object.

Example:
(symbolp 'a)
=> t

(symbolp "a")
=> nil

(symbolp #\a)
=> nil

(symbolp 't)
=> t

(symbolp t)
=> t

(symbolp 'nil)
=> t

(symbolp nil)
=> t

(symbolp '())
=> t

(symbolp '*pi*)
=> t

(symbolp *pi*)
=> nil

10.1 Symbol Names

Symbols can be either XE "named"named or XE "unnamed"unnamed.

There is a mapping from names to symbols. Distinct symbols (symbols that are not eq) always have distinct names. No such mapping is defined for unnamed symbols.

The name of a symbol is represented as a string.

10.1.1 Notation for Symbols

The constituent characters of a symbol's name are described in §1.4.

A named symbol is denoted by its print name enclosed within the vertical bars ("|"). However, the enclosing vertical bars are not necessary if the symbol satisfies the following conditions:

1. The symbol's print name consists only of neutral alphabetic characters (see §10.1.2) or the following additional characters:

0 1 2 3 4 5 6 7 8 9 + - < > / * = ? _ ! $ % [ ] ^ { } ~

(This set may have additional implementation-defined characters.)

2. The first character of the symbol's print name is a neutral alphabetic character or one of the following characters:

< > / * = ? _ ! $ % [ ] ^ { } ~

(This set may have additional implementation-defined characters.)

In addition, the following are the names of symbols that can be written without enclosing vertical bars:

+ - 1+ 1-

If the symbol name contains a vertical bar, the vertical bar must be preceded by a backslash "\". If the symbol name contains a backslash, the backslash must be preceded by another backslash. For example, "|\\\\\|\\\||" denotes a symbol whose name is a 5 character string containing backslash, backslash, vertical bar, backslash, vertical bar.

Note: All required symbols can be written without vertical bars.
It is implementation defined whether the names of symbols can contain colon (:) or ampersand (&). Consequently, whether &rest and keywords (e.g., :rest, before and :after) are represented as symbols or something else is implementation defined.

10.1.2 Alphabetic Case in Symbol Names

If the enclosing vertical bars are omitted, the case of alphabetic characters in a symbol is translated by the reader to a canonical case that is used internally. Therefore, for example, each of the following denotes the same symbol in all implementations:

foo foO fOo fOO Foo FoO FOo FOO

Internally, alphabetic case in a symbol's print name is maintained, and is significant. For example, |FOO| and |foo| are not the same symbol in any implementation. However, the reader canonicalizes the case of symbols whose names are not written enclosed by vertical bars. So foo and FOO both represent the same symbol, but it is implementation defined whether that symbol is |foo| or |FOO|.

Specifically, each implementation has an implementation-defined attribute called its XE "neutral alphabetic case"neutral alphabetic case, which is either "lowercase" or "uppercase." If the neutral alphabetic case of an implementation is lowercase, the XE "neutral alphabetic characters"neutral alphabetic characters for that implementation are defined to be as follows:

a b c d e f g h i j k l m n o p q r s t u v w x y z

Otherwise (if the neutral alphabetic case of an implementation is uppercase), the neutral alphabetic characters for that implementation are defined to be as follows:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Continuing again with the above example, if the neutral alphabetic case of an implementation is lowercase, foo, FOO and |foo| denote the same symbol; otherwise, foo, FOO and |FOO| denote the same symbol.

An implementation may extend the set of neutral alphabetic characters to include additional implementation-defined characters.

10.1.3 nil and ()

The symbol nil, which represents both the false value and the empty list, can also be denoted by ().

10.2 Symbol Properties

A XE "property"property of a symbol is a named association between a XE "property indicator"property indicator and a XE "property value"property value. A symbol s is said to have a property p if a property indicator p is associated with s.

XE "property"(property symbol property-name [obj]) -> <object>
function

Returns the value of the property named property-name associated with the symbol symbol. If symbol has no property named property-name, obj (which defaults to nil) is returned.

An error shall be signaled if either symbol or property-name is not a symbol XE "error-id. domain-error"(error-id. domain-error). obj may be any ISLISP object

Example:
(property 'zeus 'daughter)
=> athena

XE "setf"(setf (property symbol property-name) obj) -> <object>
special form

XE "set-property"(set-property obj symbol property-name) -> <object>
function

Causes obj to be the new value of the property named property-name asssociated with the symbol symbol. If the property named property-name already exists, its corresponding property value is replaced; otherwise, a new property is created. obj is returned.

An error shall be signaled if either symbol or property-name is not a symbol XE "error-id. domain-error"(error-id. domain-error). obj may be any ISLISP object

Example:
(setf (property 'zeus 'daughter) 'athena)

=> athena

(set-property 'athena 'zeus 'daughter)

=> athena

XE "remove-property"(remove-property symbol property-name) -> <object>
function

Removes the property property-name associated with symbol and returns the property value of the removed property if there is such a property. If there is no such property, nil is returned.

An error shall be signaled if either symbol or property-name is not a symbol XE "error-id. domain-error"(error-id. domain-error).

Example:
(remove-property 'zeus 'daughter)
=> athena

10.3 Unnamed Symbols

XE "gensym"(gensym) -> <symbol>
function

Returns an unnamed symbol. gensym is useful for writing macros. It is impossible for an identifier to name an unnamed symbol.

Example:
(defmacro twice (x)

   (let ((v (gensym)))

       `(let ((,v ,x)) (+ ,v ,v))))
=> twice

(twice 5)
=> 10

11 Number class

The class <number> has the disjoint subclasses <float> and <integer>.

11.1 Number class

XE "numberp"(numberp obj) -> boolean
function

Returns t if obj is a number (instance of class <number>); otherwise, returns nil. The obj may be any ISLISP object.

Example:
(numberp 3)
=> t

(numberp -0.3)
=> t

(numberp '(a b c))
=> nil

(numberp "17")
=> nil

XE "parse-number"(parse-number string) -> <number>
function

The characters belonging to string are scanned (as if by read) and if the resulting lexeme is the textual representation of a number, the number it represents is returned.

An error shall be signaled if string is not a string XE "error-id. domain-error"(error-id. domain-error). An error shall be signaled if string is not the textual representation of a number XE "error-id. cannot-parse-number"(error-id. cannot-parse-number).
Example:
(parse-number "123.34")
=> 123.34

(parse-number "#XFACE")
=> 64206

(parse-number "-37.")
an error shall be signaled
(parse-number "-.5")
an error shall be signaled
since floating-point number lexemes have at least one mantissa digit before and at least one mantissa digit after the decimal point.
XE "="(= x1 x2) -> boolean
function

Returns t if x1 has the same mathematical value as x2; otherwise, returns nil. An error shall be signaled if either x1 or x2 is not a number XE "error-id. domain-error"(error-id. domain-error).
Note: = differs from eql because = compares only the mathematical values of its arguments, whereas eql also compares the representations.
Example:
(= 3 4)
=> nil

(= 3 3.0)
=> t

(= (parse-number "134.54") 134.54)
=> t

(= 0.0 -0.0)
=> t

XE "/="(/= x1 x2) -> boolean
function

Returns t if x1 and x2 have mathematically distinct values; otherwise, returns nil. An error shall be signaled if either x1 or x2 is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
(/= 3 4)
=> t

(/= 3 3.0)
=> nil

(/= (parse-number "134.54") 134.54)
=> nil

XE ">="(>= x1 x2) -> boolean
function

XE "<="(<= x1 x2) -> boolean
function

XE ">"(> x1 x2) -> boolean
function

XE "<"(< x1 x2) -> boolean
function

>= returns t if x1 is greater than or = x2. <= returns t if x1 is less than or = x2. > returns t if x1 is greater than x2. < returns t if x1 is less than x2.

The mathematical values of the arguments are compared. An error shall be signaled if either x1 or x2 is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
(> 2 2)
=> nil

(> 2.0 2)
=> nil

(> 2 -10)
=> t

(> 100 3)
=> t

(< 2 2)
=> nil

(< 1 2)
=> t

(>= 2 2)
=> t

(>= 2.0 2)
=> t

(>= -1 2)
=> nil

(<= -1 2)
=> t

(<= 2 -1)
=> nil

In the remaining definitions in this section, any noted coercion to <float> is done as if by float or by (convert z <float>).

XE "+"(+ x*) -> <number>
function

XE "*"(* x*) -> <number>
function

The functions + and * return the sum and the product, respectively, of their arguments. If all arguments are integers, the result is an integer. If any argument is a float, the result is a float. When given no arguments, + returns 0 and * returns 1. An error shall be signaled if any x is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
(+ 12 3)
=> 15

(+ 1 2 3)
=> 6

(+ 12 3.0)
=> 15.0

(+ 4 0.0)
=> 4.0

(+)
=> 0

(* 12 3)
=> 36

(* 12 3.0)
=> 36.0

(* 4.0 0)
=> 0.0

(* 2 3 4)
=> 24

(*)
=> 1

XE "-"(- x+) -> <number>
function

Given one argument, x, this function returns its additive inverse. An error shall be signaled if x is not a number XE "error-id. domain-error"(error-id. domain-error).
If an implementation supports a -0.0 that is distinct from 0.0, then (- 0.0) returns -0.0; in implementations where -0.0 and 0.0 are not distinct, (- 0.0) returns 0.0.

Example:
(- 1)
=> -1

(- -4.0)
=> 4.0

(- 4.0)
=> -4.0

(eql (- 0.0) -0.0)
=> t

(eql (- -0.0) 0.0)
=> t

Given more than one argument, x1 … xn, - returns their successive differences, x1-x2- …. -xn. An error shall be signaled if any x is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
(- 1 2)
=> -1

(- 92 43)
=> 49

(- 2.3 -3.0)
=> 5.3

(- 0.0 0.0)
=> 0.0

(- 3 4 5)
=> -6

XE "quotient"(quotient dividend divisor+) -> <number>
function

XE "reciprocal"(reciprocal x) -> <number>
function

The function reciprocal returns the reciprocal of its argument x; that is, 1=x. An error shall be signaled if x is zero XE "error-id. division-by-zero"(error-id. division-by-zero).
The function quotient, given two arguments dividend and divisor, returns the quotient of those numbers. The result is an integer if dividend and divisor are integers and divisor evenly divides dividend, otherwise it will be a float.

Given more than two arguments, quotient operates iteratively on each of the divisor1 … divisorn as in dividend / divisor1 / … / divisorn. The type of the result follows from the two-argument case because the three-or-more-argument quotient can be defined as follows:

(quotient dividend divisor1 divisor2 . .)

( (quotient (quotient dividend divisor1) divisor2 . .).

An error shall be signaled if dividend is not a number XE "error-id. domain-error"(error-id. domain-error). An error shall be signaled if any divisor is not a number XE "error-id. domain-error"(error-id. domain-error). An error shall be signaled if any divisor is zero XE "error-id. division-by-zero"(error-id. division-by-zero).
Example:
(reciprocal 2)
=> 0.5

(quotient 10 5)
=> 2

(quotient 1 2)
=> 0.5

(quotient 2 -0.5)
=> -4.0

(quotient 0 0.0) an error shall be signaled

(quotient 2 3 4)
=> 0.16666666666666666

XE "max"(max x+) -> <number>
function

XE "min"(min x+) -> <number>
function

The function min returns the least (closest to negative infinity) of its arguments. The comparison is done by <.

The function max returns the greatest (closest to positive infinity) of its arguments. The comparison is done by >.

An error shall be signaled if any x is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
(max -5 3)
=> 3

(max 2.0 3)
=> 3

(max 2 2.0)
=> 2 or 2.0 (implementation-defined)

(max 1 5 2 4 3)
=> 5

(min 3 1)
=> 1

(min 1 2.0)
=> 1

(min 2 2.0)
=> 2 or 2.0 (implementation-defined)
(min 1 5 2 4 3)
=> 1

XE "abs"(abs x) -> <number>
function

The function abs returns the absolute value of its argument. An error shall be signaled if x is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
(abs -3)
=> 3

(abs 2.0)
=> 2.0

(abs -0.0)
=> 0.0

XE "exp"(exp x) -> <number>
function

Returns e raised to the power x, where e is the base of the natural logarithm. An error shall be signaled if x is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
(exp 1)
=> 2.718281828459045

(exp 2)
=> 7.38905609893065

(exp 1.23)
=> 3.4212295362896734

(exp 0)
=> 1 or 1.0 (implementation-defined)
XE "log"(log x) -> <number>
function

Returns the natural logarithm of x. An error shall be signaled if x is not a positive number XE "error-id. domain-error"(error-id. domain-error).
Example:
(log 2.718281828459045)
=> 1.0

(log 10)

=> 2.302585092994046

(log 1)

=> 0 or 0.0 (implementation-defined)
XE "expt"(expt x1 x2) -> <number>
function

Returns x1 raised to the power x2. The result will be an integer if x1 is an integer and x2 is a non-negative integer. An error shall be signaled if x1 is zero and x2 is negative, or if x1 is zero and x2 is a zero float, or if x1 is negative and x2 is not an integer.

Example:
(expt 2 3)
=> 8

(expt -100 2)
=> 10000

(expt 4 -2)
=> 0.0625

(expt 0.5 2)
=> 0.25

(expt x 0)
=> 1 if x is an integer
(expt x 0)
=> 1.0 if x is a float
(expt -0.25 -1)
=> -4.0

(expt 100 0.5)
=> 10.0

(expt 100 -1.5)
=> 0.001

(expt x 0.0)
=> 1.0 if x is a positive float

(expt 0.0 0.0) an error shall be signaled
XE "sqrt"(sqrt x) -> <number>
function

Returns the non-negative square root of x. An error shall be signaled if x is not a non-negative number XE "error-id. domain-error"(error-id. domain-error).
Example:
(sqrt 4)
=> 2

(sqrt 2)
=> 1.4142135623730951

(sqrt -1) an error shall be signaled
XE "*pi*"*pi* -> <float>
named constant

The value of this constant is an approximation of (.

Example:
*pi*
=> 3.141592653589793

XE "sin"(sin x) -> <number>
function

XE "cos"(cos x) -> <number>
function

XE "tan"(tan x) -> <number>
function

The function sin returns the sine of x. The function cos returns the cosine of x. The function tan returns the tangent of x. In each case, x must be given in radians.

An error shall be signaled if x is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
;; Note that conforming processors are permitted to vary

;; in the floating precision of these results.

(sin 1)
=> 0.8414709848078965

(sin 0)
=> 0 or 0.0 (implementation-defined)
(sin 0.001)
=> 9.999998333333417E-4

(cos 1)
=> 0.5403023058681398

(cos 0)
=> 1 or 1.0 (implementation-defined)
(cos 0.001)
=> 0.9999995000000417

(tan 1)
=> 1.557407724654902

(tan 0)
=> 0 or 0.0 (implementation-defined)

(tan 0.001)
=> 0.0010000003333334668

XE "atan"(atan x) -> <number>
function

Returns the arc tangent of x.

The result is a (real) number that lies between -(/2 and (/2 (both exclusive).

The following definition for (one-argument) arc tangent determines the range and branch cuts:

arctan x = log(1 + ix) - log(1 - ix)
2i

An error shall be signaled if x is not a number XE "error-id. domain-error"(error-id. domain-error).
XE "atan2"(atan2 x1 x2) -> <number>
function

Given a point (x2, x1) in rectangular coordinates, this function returns the phase of its representation in polar coordinates. If x1 is zero and x2 is negative, the result is positive. If x1 and x2 are both zero, the result is implementation defined.

An error shall be signaled if x is not a number XE "error-id. domain-error"(error-id. domain-error).

The value of atan2 is always between -( (exclusive) and ( (inclusive) when minus zero is not supported; when minus zero is supported, the range includes -(.

The signs of x1 (indicated as x) and x2 (indicated as y) are used to derive quadrant information. Figure 11.1 details various special cases. The asterisk (*) indicates that the entry in the figure applies to implementations that support minus zero.

Example:
(atan2 0 3.0)
=> 0 or 0.0 (implementation-defined)

(atan2 1 1)
=> 0.7853981633974483

(atan2 1.0 -0.3)
=> 1.8622531212727635

(atan2 0.0 -0.5)
=> 3.141592653589793

(atan2 -1 -1)
=> -2.356194490192345

(atan2 -1.0 0.3)
=> -1.2793396

(atan2 0.0 0.5)
=> 0.0

(defun asin (x) (atan2 x (sqrt (- 1 (expt x 2)))))
=> asin

(defun acos (x) (atan2 (sqrt (- 1 (expt x 2))) x))
=> acos

(defun atan (x) (atan2 x 1))

=> atan

XE "sinh"(sinh x) -> <number>
function

XE "cosh"(cosh x) -> <number>
function

XE "tanh"(tanh x) -> <number>
function

The function sinh returns the hyperbolic sine of x. The function cosh returns the hyperbolic cosine of x. The function tanh returns the hyperbolic tangent of x.

An error shall be signaled if x is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
(sinh 1)
=> 1.1752011936438014

(sinh 0)
=> 0 or 0.0 (implementation-defined)

(sinh 0.001)
=> 0.001000000166666675

(cosh 1)
=> 1.5430806348152437

(cosh 0)
=> 1 or 1.0 (implementation-defined)
(cosh 0.001)
=> 1.0000005000000416

(tanh 1)
=> 0.7615941559557649

(tanh 0)
=> 0 or 0.0 (implementation-defined)
(tanh 0.001)
=> 9.999996666668002E-4

XE "atanh"(atanh x) -> <number>
function

Returns the hyperbolic arc tangent of x. An error shall be signaled if x is not a number with absolute value less than 1 XE "error-id. domain-error"(error-id. domain-error).
The following definition for the inverse hyperbolic tangent determines the range and branch cuts: 

arctanh x = log(1 + x) - log(1 - 2x)
2

Note that:

i arctan x = arctanh ix.

The branch cut for the inverse hyperbolic tangent function is in two pieces: one along the negative real axis to the left of -1 (inclusive), continuous with quadrant III, and one along the

positive real axis to the right of 1 (inclusive), continuous with quadrant I. The points -1 and 1 are excluded from the domain. The range is that strip of the complex plane containing numbers whose imaginary part is between -(/2 and (/2. A number with imaginary part equal to -(/2 is in the range if and only if its real part is strictly negative; a number with imaginary part equal to (/2 is in the range if and only if its imaginary part is strictly positive.

Example:
(atanh 0.5)
=> 0.5493061443340549

(atanh 0)
=> 0 or 0.0 (implementation-defined)
(atanh 0.001)
=> 0.0010000003333335335

(defun asinh (x) (atanh (quotient x (sqrt (+ 1 (expt x 2))))))
=> asinh

(defun acosh (x) (atanh (quotient (sqrt (* (- x 1) (+ x 1))) x)))
=> acosh

11.2 Float class

This class represents the set of floating-point numbers. Each floating-point number is represented by a rational number with some given precision; see IEEE standard 754-1985 for details.

Floating-point numbers are written in one of the following formats:

[s]dd … d.dd … d

[s]dd … d.dd … d.E[s]dd … d

[s]dd … d.dd … d.e[s]dd … d

[s]dd … d.E[s]dd … d

[s]dd … d.e[s]dd … d

where s is either "+" or "-", and dd … d is at least one digit from "0"-"9".

There must be at least one digit before the decimal point and at least one mantissa digit after the decimal point.

XE "*most-positive-float*"*most-positive-float* -> <float>
named constant

XE "*most-negative-float*"*most-negative-float* -> <float>
named constant

The value of *most-positive-float* is the implementation-dependent floating-point number closest to positive infinity.

The value of *most-negative-float* is the implementation-dependent floating-point number closest to negative infinity.

XE "floatp"(floatp obj) -> boolean
function

Returns t if obj is a float (instance of class <float>); otherwise, returns nil. The obj may be any ISLISP object.

Example:
(floatp "2.4")
=> nil

(floatp 2)
=> nil

(floatp 2.0)
=> t

XE "float"(float x) -> <float>
function

Returns x itself if it is an instance of the class <float> and returns a floating-point approximation of x otherwise. An error shall be signaled if x is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
(float 0)
=> 0.0

(float 2)
=> 2.0

(float -2.0)
=> -2.0

(float 123456789123456789123456789)
=> 1.2345678912345679E26

XE "floor"(floor x) -> <integer>
function

Returns the greatest integer less than or equal to x. That is, x is truncated towards negative infinity. An error shall be signaled if x is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
(floor 3.0)
=> 3

(floor 3.4)
=> 3

(floor 3.9)
=> 3

(floor -3.9)
=> -4

(floor -3.4)
=> -4

(floor -3.0)
=> -3

XE "ceiling"(ceiling x) -> <integer>
function

Returns the smallest integer that is not smaller than x. That is, x is truncated towards positive infinity. An error shall be signaled if x is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
(ceiling 3.0)
=> 3

(ceiling 3.4)
=> 4

(ceiling 3.9)
=> 4

(ceiling -3.9)
=> -3

(ceiling -3.4)
=> -3

(ceiling -3.0)
=> -3

XE "truncate"(truncate x) -> <integer>
function

Returns the integer between 0 and x (inclusive) that is nearest to x. That is, x is truncated towards zero. An error shall be signaled if x is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
(truncate 3.0)
=> 3

(truncate 3.4)
=> 3

(truncate 3.9)
=> 3

(truncate -3.4)
=> -3

(truncate -3.9)
=> -3

(truncate -3.0)
=> -3

XE "round"(round x) -> <integer>
function

Returns the integer nearest to x. If x is exactly halfway between two integers, the even one is chosen. An error shall be signaled if x is not a number XE "error-id. domain-error"(error-id. domain-error).
Example:
(round 3.0)
=> 3

(round 3.4)
=> 3

(round -3.4)
=> -3

(round 3.6)
=> 4

(round -3.6)
=> -4

(round 3.5)
=> 4

(round -3.5)
=> -4

(round 2.5)
=> 2

(round -0.5)
=> 0

11.3 Integer class

Integer objects correspond to mathematical integers.

Arithmetic operations that only involve integers behave in a mathematically correct way, regardless of the size of the integer. If there are cases where arithmetic on integers would produce results or intermediate expressions that exceed the precision of the underlying hardware, an ISLISP processor shall simulate any necessary operations in software in order to assure mathematical correctness. The circumstances, if any, for which such simulation is necessary is implementation defined; the point at which such simulation will exceed the capacity of the processor is also implementation defined.

Integers are written in one of the following formats.

#B [s]bb … b, each b being either "0" or "1".

#b [s]bb … b, each b being either "0" or "1".

#O [s]oo … o, each o being one of "0"-"7".

#o [s]oo … o, each o being one of "0"-"7".

   [s]dd … d, each d being one of "0"-"9".

#X [s]xx … x, each x being one of "0"-"9", "A"-"F", "a"-"f".

#x [s]xx … x, each x being one of "0"-"9", "A"-"F", "a"-"f".

where s is either "+" or "-".

Note: In ISLISP, there is no variable that controls the reader. Thus the above notations are exactly the notations for integers.
XE "integerp"(integerp obj) -> boolean
function

Returns t if obj is an integer (instance of class <integer>); otherwise, returns nil. obj may be any ISLISP object.

Example:
(integerp 3)
=> t

(integerp 3.4)
=> nil

(integerp "4")
=> nil

(integerp '(a b c))
=> nil

XE "div"(div z1 z2) -> <integer>
function

XE "mod"(mod z1 z2) -> <integer>
function

div returns the greatest integer less than or equal to the quotient of z1 and z2. An error shall be signaled if z2 is zero XE "error-id. division-by-zero"(error-id. division-by-zero).

mod returns the remainder of the integer division of z1 by z2. The sign of the result is the sign of z2. The result lies between 0 (inclusive) and z2 (exclusive), and the difference of z1 and this result is divisible by z2 without remainder.

div and mod satisfy:

(= z1 (+ (* (div z1 z2) z2) (mod z1 z2)))

That is, the evaluation of the above form always return t.

An error shall be signaled if either z1 or z2 is not an integer XE "error-id. domain-error"(error-id. domain-error).
Example:
(div 12 3)
=> 4

(div 14 3)
=> 4

(div -12 3)
=> -4

(div -14 3)
=> -5

(div 12 -3)
=> -4

(div 14 -3)
=> -5

(div -12 -3)
=> 4

(div -14 -3)
=> 4

(mod 12 3)
=> 0

(mod 7 247)
=> 7

(mod 247 7)
=> 2

(mod 14 3)
=> 2

(mod -12 3)
=> 0

(mod -14 3)
=> 1

(mod 12 -3)
=> 0

(mod 14 -3)
=> -1

(mod -12 -3)
=> 0

(mod -14 -3)
=> -2

XE "gcd"(gcd z1 z2) -> <integer>
function

gcd returns the greatest common divisor of its integer arguments. The result is a non-negative integer. For nonzero arguments the greatest common divisor is the largest integer z such that z1 and z2 are integral multiples of z.

An error shall be signaled if either z1 or z2 is not an integer XE "error-id. domain-error"(error-id. domain-error).
Example:
(gcd 12 5)
=> 1

(gcd 15 24)
=> 3

(gcd -15 24)
=> 3

(gcd 15 -24)
=> 3

(gcd -15 -24)
=> 3

(gcd 0 -4)
=> 4

(gcd 0 0)
=> 0

XE "lcm"(lcm z1 z2) -> <integer>
function

lcm returns the least common multiple of its integer arguments. gcd and lcm satisfies:

(= (* (gcd m n) (lcm m n)) (abs (* m n)))

That is, the evaluation of the above form always return t.

An error shall be signaled if either z1 or z2 is not an integer XE "error-id. domain-error"(error-id. domain-error).
Example:
(lcm 2 3)
=> 6

(lcm 15 24)
=> 120

(lcm 15 -24)
=> 120

(lcm -15 24)
=> 120

(lcm -15 -24)
=> 120

(lcm 0 -4)
=> 0

(lcm 0 0)
=> 0

XE "isqrt"(isqrt z) -> <integer>
function

Returns the greatest integer less than or equal to the exact positive square root of z. An error shall be signaled if z is not a non-negative integer XE "error-id. domain-error"(error-id. domain-error).
Example:
(isqrt 49)
=> 7

(isqrt 63)
=> 7

(isqrt 1000000000000002000000000000000)

=> 1000000000000000

12 Character class

Characters are represented as instances of the <character> class. This insulates the programmer from particular character codes.
The ISLISP character set has at least ninety-five printing characters plus a newline character. The ISLISP printing characters are the space character, and the following ninety-four non-blank characters:

! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _

` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

A character literal is denoted by #\ followed by a token which is either the character itself, or, if the character has a name, the character's name. For example, the letter A is denoted by "#\A". The newline and space characters have the names "newline" and "space," respectively, so they can be denoted by "#\newline" and "#\space". (Case is not significant when naming a character.)

Characters are ordered by char<, and this order satisfies:

0<1<2<3<4<5<6<7<8<9

A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z

a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<q<r<s<t<u<v<w<x<y<z

where char1 < char2 means that (char< char1 char2) is true.

XE "characterp"(characterp obj) -> boolean
function

Returns t if obj is a character (instance of class <character>); otherwise, returns nil. obj may be any ISLISP object.

Example:
(characterp #\a)
=> t

(characterp "a")
=> nil

(characterp 'a)
=> nil

XE "char="(char= char1 char2) -> boolean
function

XE "char/="(char/= char1 char2) -> boolean
function

XE "char<"(char< char1 char2) -> boolean
function

XE "char>"(char> char1 char2) -> boolean
function

XE "char<="(char<= char1 char2) -> boolean
function

XE "char>="(char>= char1 char2) -> boolean
function

The function char= tests whether char1 is the same character as char2. The function char< tests whether char1 is less than char2. The function char<= tests whether char1 is less than or equal to char2. The ordering used is the partial order defined above, extended to a total order on all characters in an implementation-defined manner. If the test is satisfied, t is returned; otherwise, nil is returned.

Two characters are char/= if and only if they are not char=. Two characters are char> if and only if they are not char<=. Two characters are char>= if and only if they are not char<.

An error shall be signaled if either char1 or char2 is not a character XE "error-id. domain-error"(error-id. domain-error).
Example:
(char= #\a #\a)
=> t

(char= #\a #\b)
=> nil

(char= #\a #\A)
=> nil

(char/= #\a #\a)
=> nil

(char< #\a #\a)
=> nil

(char< #\a #\b)
=> t

(char< #\b #\a)
=> nil

(char< #\a #\A)
=> nil or t (implementation-defined)
(char< #\* #\a)
=> nil or t (implementation-defined)
(char> #\b #\a)
=> t

(char<= #\a #\a)
=> t

(char<= #\a #\A)
=> nil or t (implementation-defined)
(char>= #\b #\a)
=> t

(char>= #\a #\a)
=> t

13 List class

The <list> class is partitioned into two subclasses <cons> and <null>.

13.1 Cons

A cons (sometimes also called "dotted pair") consists of two components; the left component is called car and the right component is called cdr. The constructor of this class is cons. Conses are written as

(car . cdr)

where car and cdr denote the values in the car and cdr components, respectively, of the cons object. As a special case, if the cdr value is nil, then the cons object is written as

(car)

Thus, in general, a data structure that consists of cons objects will be written in either of the following formats:

(x1 . (x2 … (xn-1 . xn) …))

(x1 . (x2 … (xn-1) …))

These may be written, respectively, as

(x1 x2 … xn-1 xn)

(x1 x2 … xn-1)

XE "consp"(consp obj) -> boolean
function

Returns t if obj is a cons (instance of class <cons>); otherwise, returns nil. obj may be any ISLISP object.

Example:
(consp '(a . b))
=> t

(consp '(a b c))
=> t

(consp '())
=> nil

(consp #(a b))
=> nil

XE "cons"(cons obj1 obj2) -> <cons>
function

This function builds a cons from two objects, with obj1 as its car (or `left') part and with obj2 as its cdr (or `right') part. An error shall be signaled if the requested cons cannot be allocated XE "error-id. cannot-create-cons"(error-id. cannot-create-cons). Both obj1 and obj2 may be any ISLISP object.

Example:
(cons 'a '())
=> (a)

(cons '(a) '(b c d))
=> ((a) b c d)

(cons "a" '(b c))
=> ("a" b c)

(cons 'a 3)
=> (a . 3)

(cons '(a b) 'c)
=> ((a b) . c)

XE "car"(car cons) -> <object> 
function

The function car returns the left component of the cons. An error shall be signaled if cons is not a cons XE "error-id. domain-error"(error-id. domain-error).
Example:
(car '()) an error shall be signaled

(car '(a b c))
=> a

(car '((a) b c d))
=> (a)

(car '(1 . 2))
=> 1

XE "cdr"(cdr cons) -> <object>
function

The function cdr returns the right component of the cons. An error shall be signaled if cons is not a cons XE "error-id. domain-error"(error-id. domain-error).
Example:
(cdr '()) an error shall be signaled

(cdr '((a) b c d))
=> (b c d)

(cdr '(1 . 2))
=> 2

XE "setf"(setf (car cons) obj) -> <object>
special form

XE "set-car"(set-car obj cons) -> <object>
function

Updates the left component of cons with obj. The returned value is obj. An error shall be signaled if cons is not a cons XE "error-id. domain-error"(error-id. domain-error). obj may be any ISLISP object.

Example:
(let ((x (list 'apple 'orange)))

     (list x (car x)

          (setf (car x) 'banana)

          x (car x)))

=> ((banana orange) apple banana (banana orange) banana)

XE "setf"(setf (cdr cons) obj) -> <object> 
special form

XE "set-cdr"(set-cdr obj cons) -> <object>
function

Updates the right component of cons with obj. The returned value is obj. An error shall be signaled if cons is not a cons XE "error-id. domain-error"(error-id. domain-error). obj may be any ISLISP object.

Example:
(let ((x (list 'apple 'orange)))

     (list x (cdr x)

          (setf (cdr x) 'banana)

          x (cdr x)))

=> ((apple . banana) (orange) banana (apple . banana) banana)

13.2 Null class

This class consists of only one element, the object called nil. This object is the false value in boolean expressions. The length of the sequence nil is 0.

XE "null"(null obj) -> boolean
function

Returns t if obj is nil; otherwise, returns nil.
 obj may be any ISLISP object.

Example:
(null '(a b c))
=> nil

(null '())
=> t

(null (list))
=> t

13.3 List operations

XE "listp"(listp obj) -> boolean
function

Returns t if obj is a list (instance of class <list>); otherwise, returns nil. obj may be any ISLISP object.

Example:
(listp '(a b c))
=> t

(listp '())
=> t

(listp '(a . b))
=> t

(let ((x (list 'a)))

     (setf (cdr x) x)

     (listp x))
=> t

(listp "abc")
=> nil

(listp #(1 2))
=> nil

(listp 'jerome)
=> nil

XE "create-list"(create-list i [initial-element]) -> <list>
function

Returns a list of length i. If initial-element is given, the elements of the new list are initialized with this object; otherwise, the initialization is implementation defined. An error shall be signaled if the requested list cannot be allocated XE "error-id. cannot-create-list"(error-id. cannot-create-list). An error shall be signaled if i is not a non-negative integer XE "error-id. domain-error"(error-id. domain-error). initial-element may be any ISLISP object.

Example:
(create-list 3 17)
=> (17 17 17)

(create-list 2 #\a)
=> (#\a #\a)

XE "list"(list obj*) -> <list>
function

Returns a new list whose length is the number of arguments and whose elements are the arguments in the same order as in the list-form. An error shall be signaled if the requested list cannot be allocated XE "error-id. cannot-create-list" (error-id. cannot-create-list). Each obj may be any ISLISP object.

Example:
(list 'a (+ 3 4) 'c)
=> (a 7 c)

(list)
=> nil

XE "reverse"(reverse list) -> <list>
function

XE "nreverse"(nreverse list) -> <list>
function

These functions each return a list whose elements are those of the given list, but in reverse order. An error shall be signaled if list is not a list XE "error-id. domain-error"(error-id. domain-error).
For reverse, no side-effect to the given list occurs. The resulting list is permitted but not required to share structure with the input list.

For nreverse, the conses which make up the top level of the given list are permitted, but not required, to be side-effected in order to produce this new list. nreverse should never be called on a literal object.

Example:
(reverse '(a b c d e))
=> (e d c b a)

(reverse '(a))
=> (a)

(reverse '())
=> ()

(let* ((x (list 'a 'b)) (y (nreverse x))) (equal x y))

=> implementation-defined

XE "append"(append list*) -> <list>
function

Returns the result of appending all of the lists, or () if given no lists. An error shall be signaled if any list is not a list XE "error-id. domain-error"(error-id. domain-error).

This function does not modify its arguments. It is implementation defined whether and when the result shares structure with its list arguments.

An error shall be signaled if the list cannot be allocated XE "error-id. cannot-create-list" (error-id. cannot-create-list).

Example:
(append '(a b c) '(d e f))
=> (a b c d e f)

XE "member"(member obj list) -> <list>
function

If list contains at least one occurrence of obj (as determined by eql), the first sublist of list whose car is obj is returned. Otherwise, nil is returned. An error shall be signaled if list is not a list XE "error-id. domain-error"(error-id. domain-error).
Example:
(member 'c '(a b c d e f))
=> (c d e f)

(member 'g '(a b c d e f))
=> nil

(member 'c '(a b c a b c))
=> (c a b c)

XE "mapcar"(mapcar function list+) -> <list>
function

XE "mapc"(mapc function list+) -> <list>
function

XE "mapcan"(mapcan function list+) -> <list>
function

XE "maplist"(maplist function list+) -> <list>
function

XE "mapl"(mapl function list+) -> <list>
function

XE "mapcon"(mapcon function list+) -> <list>
function

Successively applies the given function to sets of arguments determined by the given lists. The way in which the arguments are determined, and the way in which the result is accumulated are how these functions differ.


Function
Argument
Result


mapcar
successive elements
successive cons


mapc
successive elements
none (i.e., list1 returned)


mapcan
successive elements
successive "destructive append"


maplist
successive sublists
successive cons


mapl
successive sublists
none (i.e., list1 returned)


mapcon
successive sublists
successive "destructive append"

mapcar operates on successive elements of the lists. function is applied to the first element of each list, then to the second element of each list, and so on. The iteration terminates when the shortest list runs out, and excess elements in other lists are ignored. The value returned by mapcar is a list of the results of successive calls to function.

mapc is like mapcar except that the results of applying function are not accumulated; list1 is returned.

maplist is like mapcar except that function is applied to successive sublists of the lists. function is first applied to the lists themselves, and then to the cdr of each list, and then to the cdr of the cdr of each list, and so on.

mapl is like maplist except that the results of applying function are not accumulated; list1 is returned.

mapcan and mapcon are like mapcar and maplist respectively, except that the results of applying function are combined into a list by the use of an operation that performs a destructive form of append rather than list.

An error shall be signaled if function is not a function XE "error-id. domain-error"(error-id. domain-error). An error shall be signaled if any list is not a list XE "error-id. domain-error"(error-id. domain-error).
In all cases, the calls to function proceed from left to right, so that if function has side effects, it can rely upon being called first on all of the elements with index 0, then on all of those numbered 1, and so on.

Example:
(mapcar #'car '((1 a) (2 b) (3 c)))
=> (1 2 3)

(mapcar #'abs '(3 -4 2 -5 -6))
=> (3 4 2 5 6)

(mapcar #'cons '(a b c) '(1 2 3))
=> ((a . 1) (b . 2) (c . 3))

(let ((x 0)) (mapc (lambda (v) (setq x (+ x v))) '(3 5)) x)

=> 8

(maplist #'append '(1 2 3 4) '(1 2) '(1 2 3))

=> ((1 2 3 4 1 2 1 2 3) (2 3 4 2 2 3))

(maplist (lambda (x) (cons 'foo x)) '(a b c d))

=> ((foo a b c d) (foo b c d) (foo c d) (foo d))

(maplist (lambda (x) (if (member (car x) (cdr x)) 0 1))

'(a b a c d b c))

=> (0 0 1 0 1 1 1)

(let ((k 0))

     (mapl (lambda (x)

              (setq k (+ k (if (member (car x) (cdr x)) 0 1))))

           '(a b a c d b c))

     k)

=> 4

(mapcan (lambda (x) (if (> x 0) (list x))) '(-3 4 0 5 -2 7))

=> (4 5 7)

(mapcon (lambda (x) (if (member (car x) (cdr x)) (list (car x))))

'(a b a c d b c b c))

=> (a b c b c)

(mapcon #'list '(1 2 3 4))
=> ((1 2 3 4) (2 3 4) (3 4) (4))

XE "assoc"(assoc obj association-list) -> <list>
function

If assocation-list contains at least one cons whose car is obj (as determined by eql), the first such cons is returned. Otherwise, nil is returned. An error shall be signaled if association-list is not a list of conses XE "error-id. domain-error"(error-id. domain-error).
Example:
(assoc 'a '((a . 1) (b . 2)))
=> (a . 1)

(assoc 'a '((a . 1) (a . 2)))
=> (a . 1)

(assoc 'c '((a . 1) (b . 2)))
=> nil

14 Arrays

14.1 Array Classes

Arrays store data in array components, which are indexed by a tuple of non-negative integers called indices.

The total number of elements in the array is the product of the dimensions. Zero-dimensional arrays are permissible and, as a consequence of this rule, can store exactly one element, indexed by an empty tuple of indices.

There are several array classes. For a pictorial representation of their inheritance relationship, see Figure 1. The following is an explanation of the purpose of each of these classes:

· <basic-array>

All arrays are of the abstract class <basic-array>, but (as with all abstract classes) there are no direct instances of this class. It is provided for type discrimination purposes only.

ISLISP defines two direct subclasses of <basic-array>: <basic-vector> and <basic-array*>. These classes are mutually exclusive and form an exhaustive partition of the set of basic-arrays. There shall be no other direct subclasses of <basic-array>.

· <basic-vector>

All one-dimensional arrays are of the abstract class <basic-vector>, but (as with all abstract classes) there are no direct instances of this class. It is provided for type discrimination purposes only.

ISLISP defines only two direct subclasses of <basic-vector>: <general-vector> and <string>. There may be additional, implementation-defined subclasses of <basic-vector>.

Note: An implementation might provide specialized array representations for one-dimensional arrays of bits. If provided, such an array representation would be subclass of <basic-vector>.
· <general-vector>

An object of class <general-vector> is a one-dimensional array that is capable of holding elements of type <object>. When the function create-array is asked to create a one-dimensional array, the resulting array is of this class.

· <string>

An object of class <string> is a one-dimensional array that is capable only of holding elements of type <character>. When the function create-string is used, the result is of this class.

· <basic-array*>

All non-one-dimensional arrays are of the abstract class <basic-array*>, but (as with all abstract classes) there are no direct instances of this class. It is provided for type discrimination purposes only.

ISLISP defines only one direct subclass of <basic-array*>: <general-array*>. There may be additional, implementation-defined subclasses of <basic-array*>.

Note: An implementation might provide specialized array representations for two-dimensional arrays of 1 or more bits to hold display information for a monochrome or color screen. If provided, such array representations would be subclasses of <basic-array*>.

· <general-array*>

An object of class <general-array*> is a non-one-dimensional array that is capable of holding elements of type <object>. When the function create-array is asked to create an array of dimensionality other than 1, the resulting array is of this class.

14.2 General Arrays

An object that is either of class <general-vector> or of class <general-array*> is sometimes called a "general array."

General arrays are capable of storing any object of class <object>. Those arrays that are not general arrays are the ones restricted to storage objects of more specialized classes.

A general array can be expressed as a textual literal using #na notation (where n is an integer indicating the number of dimensions of the array) followed by a nested list of sequences denoting the contents of the array. This structure can be defined as follows. If n = 1 the structure is simply (obj1 … objn). If n > 1 and the dimensions are (n1 n2 …), the structure is (str1 … strn1), where the stri are the structures of the n1 subarrays, each of which has dimensions (n2 …). For example, the textual representation of (create-array '(2 3 4) 5) is as follows:

#3a(((5 5 5 5) (5 5 5 5) (5 5 5 5)) ((5 5 5 5) (5 5 5 5) (5 5 5 5))).

14.3 Array Operations

To manipulate arrays ISLISP provides the following functions.

XE "basic-array-p"(basic-array-p obj) -> boolean
function

XE "basic-array*-p"(basic-array*-p obj) -> boolean
function

XE "general-array*-p"(general-array*-p obj) -> boolean
function

basic-array-p returns t if obj is a basic-array (instance of class <basic-array>); otherwise, returns nil. obj may be any ISLISP object.

basic-array*-p returns t if obj is a basic-array* (instance of class <basic-array*>); otherwise, returns nil. obj may be any ISLISP object.

general-array*-p returns t if obj is a general-array* (instance of class <general-array*>); otherwise, returns nil. obj may be any ISLISP object.

Example:
(mapcar (lambda (x)

           (list (basic-array-p x)

                 (basic-array*-p x)

                 (general-array*-p x)))

       '((a b c)

         "abc"

         #(a b c)

         #1a(a b c)

         #2a((a) (b) (c))))

=> ((nil nil nil) (t nil nil) (t nil nil) (t nil nil) (t t t))

XE "create-array"(create-array dimensions [initial-element]) -> <basic-array>
function

This function creates an array of the given dimensions. The dimensions argument is a list of non-negative integers.

The result is of class <general-vector> if there is only one dimension, or of class <general-array*> otherwise.

If initial-element is given, the elements of the new array are initialized with this object, otherwise the initialization is implementation defined.

An error shall be signaled if the requested array cannot be allocated XE "error-id. cannot-create-array"(error-id. cannot-create-array).
An error shall be signaled if dimensions is not a proper list of non-negative integers XE "error-id. domain-error"(error-id. domain-error). initial-element may be any ISLISP object.

Example:
(create-array '(2 3) 0.0)
=> #2a((0.0 0.0 0.0) (0.0 0.0 0.0))

(create-array '(2) 0.0)
=> #(0.0 0.0)

XE "aref"(aref basic-array z*) -> <object>
function

XE "garef"(garef general-array z*) -> <object>
function

aref returns the object stored in the component of the basic-array specified by the sequence of integers z. This sequence must have exactly as many elements as there are dimensions in the basic-array, and each one must satisfy 0 ( zi < di, di the ith dimension and 0 (  i < d, d the number of dimensions. Arrays are indexed 0 based, so the ith row is accessed via the index i - 1.

An error shall be signaled if basic-array is not a basic-array XE "error-id. domain-error"(error-id. domain-error). An error shall be signaled if any z is not a non-negative integer XE "error-id. domain-error"(error-id. domain-error).
garef is like aref but an error shall be signaled if its first argument, general-array, is not an object of class <general-vector> or of class <general-array*> XE "error-id. domain-error"(error-id. domain-error).
Example:
(defglobal array1 (create-array '(3 3 3) 0))

=> array1

array1

=> #3a(((0 0 0) (0 0 0) (0 0 0))

((0 0 0) (0 0 0) (0 0 0))

((0 0 0) (0 0 0) (0 0 0)))

(aref array1 0 1 2)
=> 0

(setf (aref array1 0 1 2) 3.14)
=> 3.14

(aref array1 0 1 2)
=> 3.14

(aref (create-array '(8 8) 6) 1 1)
=> 6

(aref (create-array '() 19))
=> 19

XE "setf"(setf (aref basic-array z*) obj) -> <object>
special form

XE "set-aref"(set-aref obj basic-array z*) -> <object>
function

XE "setf"(setf (garef general-array z*) obj) -> <object>
special form

XE "set-garef"(set-garef obj general-array z*) -> <object>
function

These replace the object obtainable by aref or garef with obj. The constraints on the basic-array, the general-array, and the sequence of indices z is the same as for aref and garef.

Example:
(setf (aref array1 0 1 2) 3.15)
=> 3.15

(set-aref 51.3 array1 0 1 2)
=> 51.3

XE "array-dimensions"(array-dimensions basic-array) -> <list>
function

Returns a list of the dimensions of a given basic-array. An error shall be signaled if basic-array is not a basic-array XE "error-id. domain-error"(error-id. domain-error). The consequences are undefined if the returned list is modified.

Example:
(array-dimensions

      (create-array '(2 2) 0))
=> (2 2)

(array-dimensions (vector 'a 'b))
=> (2)

(array-dimensions "foo")
=> (3)

15 Vectors

A vector is a one dimensional array. See §14.1 for detailed information about the relationship of arrays and vectors.

General vectors are written as follows:

#(x1 x2 … xn)

XE "basic-vector-p"(basic-vector-p obj) -> boolean
function

XE "general-vector-p"(general-vector-p obj) -> boolean
function

basic-vector-p returns t if obj is a basic-vector (instance of class <basic-vector>); otherwise, returns nil. obj may be any ISLISP object.

general-vector-p returns t if obj is a general-vector (instance of class <general-vector>); otherwise, returns nil. obj may be any ISLISP object.

Example:
(mapcar (lambda (x)

           (list (basic-vector-p x)

                 (general-vector-p x)))

       '((a b c)

         "abc"

         #(a b c)

         #1a(a b c)

         #2a((a) (b) (c))))

=> ((nil nil) (t nil) (t t) (t t) (nil nil))

XE "create-vector"(create-vector i [initial-element]) -> <general-vector>
function

Returns a general-vector of length i. If initial-element is given, the elements of the new vector are initialized with this object, otherwise the initialization is implementation defined. An error shall be signaled if the requested vector cannot be allocated XE "error-id. cannot-create-vector"(error-id. cannot-create-vector). An error shall be signaled if i is not a non-negative integer XE "error-id. domain-error"(error-id. domain-error). initial-element may be any ISLISP object.

Example:
(create-vector 3 17)
=> #(17 17 17)

(create-vector 2 #\a)
=> #(#\a #\a)

XE "vector"(vector obj*) -> <general-vector>
function

Returns a new general-vector whose elements are its obj arguments. The length of the newly created vector is, therefore, the number of objs passed as arguments. The vector is indexed by integers ranging from 0 to dimension-1. An error shall be signaled if the requested vector cannot be allocated XE "error-id. cannot-create-vector"(error-id. cannot-create-vector). Each obj may be any ISLISP object.

Example:
(vector 'a 'b 'c)
=> #(a b c)

(vector)
=> #()

16 String class

A string is a vector that is capable only of holding elements of type <character>. See §14.1 for detailed information about the relationship of arrays, vectors, and strings.

Any implementation-defined character can be a string element. In ISLISP, string indices are 0-based. Strings are written by listing all the element characters in order and by enclosing them with double quotes """. If the string has a double quote as its element, the double quote must be preceded by a backslash "\". If the string has a backslash as its element, the backslash must be preceded by another backslash. Strings contained in program text as literals are immutable objects. The representation of non-printing characters is implementation defined.

XE "stringp"(stringp obj) -> boolean
function

Returns t if obj is a string (instance of class <string>); otherwise, returns nil. obj may be any ISLISP object.

Example:
(stringp "abc")
=> t

(stringp 'abc)
=> nil

XE "create-string"(create-string i [initial-character]) -> <string>
function

Returns a string of length i. If initial-character is given, then the characters of the new string are initialized with this character, otherwise the initialization is implementation defined. An error shall be signaled if the requested string cannot be allocated XE "error-id. cannot-create-string"(error-id. cannot-create-string). An error shall be signaled if i is not a non-negative integer or if initial-character is not a character XE "error-id. domain-error"(error-id. domain-error).
Example:
(create-string 3 #\a)
=> "aaa"

(create-string 0 #\a)
=> ""

XE "string="(string= string1 string2) -> quasi-boolean
function

XE "string/="(string/= string1 string2) -> quasi-boolean
function

XE "string<"(string< string1 string2) -> quasi-boolean
function

XE "string>"(string> string1 string2) -> quasi-boolean
function

XE "string>="(string>= string1 string2) -> quasi-boolean
function

XE "string<="(string<= string1 string2) -> quasi-boolean
function

The function string= tests whether string1 is the same string as string2. The function string< tests whether string1 is less than string2. The function string<= tests whether string1 is less than or equal to string2.

The ordering used is based on character comparisons.

Two strings are string= if they are of the same length, l, and if for every i, where 0 ( i < l, (char= (elt string1 i) (elt string2 i)) holds.

Two strings string1 and string2 are in order (string<) if in the first position in which they differ the character of string1 is char< the corresponding character of string2, or if the string1 is a proper prefix of string2 (of shorter length and matching in all the characters of string1).

Two strings are string<= if they are either string< or they are string=.

Two strings are string/= if and only if they are not string=. Two strings are string> if and only if they are not string<=. Two strings are string>= if and only if they are not string<.

For these 6 string comparison functions, if the test is satisfied, an implementation-defined non-nil value is returned; otherwise, nil is returned.

An error shall be signaled if either string1 or string2 is not a string XE "error-id. domain-error"(error-id. domain-error).
Example:
(if (string= "abcd" "abcd") t nil) 
=> t

(if (string= "abcd" "wxyz") t nil) 
=> nil

(if (string= "abcd" "abcde") t nil) 
=> nil

(if (string= "abcde" "abcd") t nil) 
=> nil

(if (string/= "abcd" "wxyz") t nil) 
=> t

(if (string< "abcd" "abcd") t nil) 
=> nil

(if (string< "abcd" "wxyz") t nil) 
=> t

(if (string< "abcd" "abcde") t nil) 
=> t

(if (string< "abcde" "abcd") t nil) 
=> nil

(if (string<= "abcd" "abcd") t nil) 
=> t

(if (string<= "abcd" "wxyz") t nil) 
=> t

(if (string<= "abcd" "abcde") t nil)
=> t

(if (string<= "abcde" "abcd") t nil)
=> nil

(if (string> "abcd" "wxyz") t nil)
=> nil

(if (string>= "abcd" "abcd") t nil)
=> t

XE "char-index"(char-index char string [start-position]) -> <object>
function

Returns the position of char in string, The search starts from the position indicated by start-position (which is 0-based and defaults to 0). The value returned if the search succeeds is an offset from the beginning of the string, not from the starting point. If the char does not occur in the string, nil is returned. The function char= is used for the comparisons.

An error shall be signaled if char is not a character or if string is not a string XE "error-id. domain-error"(error-id. domain-error).
Example:
(char-index #\b "abcab")
=> 1

(char-index #\B "abcab")
=> nil

(char-index #\b "abcab" 2)
=> 4

(char-index #\d "abcab")
=> nil

(char-index #\a "abcab" 4)
=> nil

XE "string-index"(string-index substring string [start-position]) -> <object>
function

Returns the position of the given substring within string. The search starts from the position indicated by start-position (which is 0-based and defaults to 0). The value returned if the search succeeds is an offset from the beginning of the string, not from the starting point. If that substring does not occur in the string, nil is returned. Presence of the substring is done by sequential use of char= on corresponding elements of the two strings.

An error shall be signaled if either substring or string is not a string XE "error-id. domain-error"(error-id. domain-error).
Example:
(string-index "foo" "foobar")
=> 0

(string-index "bar" "foobar")
=> 3

(string-index "FOO" "foobar")
=> nil

(string-index "foo" "foobar" 1)
=> nil

(string-index "bar" "foobar" 1)
=> 3

(string-index "foo" "")
=> nil

(string-index "" "foo")
=> 0

XE "string-append"(string-append string*) -> <string>
function

Returns a single string containing a sequence of characters that results from appending the sequences of characters of each of the strings, or "" if given no strings. An error shall be signaled if any string is not a string XE "error-id. domain-error"(error-id. domain-error).
This function does not modify its arguments. It is implementation defined whether and when the result shares structure with its string arguments.

An error shall be signaled if the string cannot be allocated XE "error-id. cannot-create-string"(error-id. cannot-create-string).
Example:
(string-append "abc" "def")
=> "abcdef"

(string-append "abc" "abc")
=> "abcabc"

(string-append "abc" "")
=> "abc"

(string-append "" "abc")
=> "abc"

(string-append "abc" "" "def")
=> "abcdef"

17 Sequence Functions

Objects that are either of class <basic-vector> or of class <list> are sometimes called "sequences". The operations upon sequences are called "sequence functions."

XE "length"(length sequence) -> <integer>
function

Returns the length of sequence as an integer greater than or equal to 0.

When sequence is a basic-vector, length returns its dimension.

When sequence is a list, the result is the number of elements in the list; if an element is itself a list, the elements within this sublist are not counted. In the case of dotted lists, length returns the number of conses at the uppermost level of the list. For example, (length '(a b . c)) => 2, since'(a b . c) ( (cons 'a (cons 'b 'c)).
An error shall be signaled if sequence is not a basic-vector or a list XE "error-id. domain-error"(error-id. domain-error).
Example:
(length '(a b c))
=> 3

(length '(a (b) (c d e)))
=> 3

(length '())
=> 0

(length (vector 'a 'b 'c))
=> 3

XE "elt"(elt sequence z) -> <object>
function

Given a sequence and an integer z satisfying 0 ( z < (length sequence), elt returns the element of sequence that has index z. Indexing is 0-based; i.e., z = 0 designates the first element. An error shall be signaled if z is an integer outside of the mentioned range XE "error-id. index-out-of-range"(error-id. index-out-of-range).
An error shall be signaled if sequence is not a basic-vector or a list or if z is not an integer XE "error-id. domain-error"(error-id. domain-error).
Example:
(elt '(a b c) 2)
=> c

(elt (vector 'a 'b 'c) 1)
=> b

(elt "abc" 0)
=> #\a

XE "setf"(setf (elt sequence z) obj) -> <object>
special form

XE "set-elt"(set-elt obj sequence z) -> <object>
function

These replace the object obtainable by elt with obj. The returned value is obj.
An error shall be signaled if z is an integer outside of the valid range of indices XE "error-id. index-out-of-range"(error-id. index-out-of-range). An error shall be signaled if sequence is not a basic-vector or a list or if z is not an integer XE "error-id. domain-error"(error-id. domain-error). obj may be any ISLISP object.

Example:
(let ((string (create-string 5 #\x)))

     (setf (elt string 2) #\O)

     x)
=> "xxOxx"

XE "subseq"(subseq sequence z1 z2) -> sequence
function

Given a sequence sequence and two integers z1 and z2 satisfying 0 ( z1 ( z2 ( (length sequence), this function returns the subsequence of length z2- z1, containing the elements with indices from z1 (inclusive) to z2 (exclusive). The subsequence is newly allocated, and has the same class as sequence.

An error shall be signaled if the requested subsequence cannot be allocated XE "error-id. cannot-create-sequence" (error-id. cannot-create-sequence). An error shall be signaled if z1 or z2 are outside of the bounds mentioned XE "error-id. index-out-of-range"(error-id. index-out-of-range). An error shall be signaled if sequence is not a basic-vector or a list, or if z1 is not an integer, or if z2 is not an integer XE "error-id. domain-error"(error-id. domain-error).

Example:
(subseq "abcdef" 1 4)
=> "bcd"

(subseq '(a b c d e f) 1 4)
=> (b c d)

(subseq (vector 'a 'b 'c 'd 'e 'f) 1 4)

=> #(b c d)

XE "map-into"(map-into destination function sequence*) -> sequence
function

Destructively modifies destination to contain the results of applying function to successive elements in the sequences. The destination is returned.

If destination and each element of sequences are not all the same length, the iteration terminates when the shortest sequence (of any of the sequences or the destination) is exhausted.

The calls to function proceed from left to right, so that if function has side effects, it can rely upon being called first on all of the elements with index 0, then on all of those numbered 1, and so on.

An error shall be signaled if destination is not a basic-vector or a list XE "error-id. domain-error"(error-id. domain-error).
An error shall be signaled if any seq is not a basic-vector or a list XE "error-id. domain-error"(error-id. domain-error).
Example:
(setq a (list 1 2 3 4))
=> (1 2 3 4)

(setq b (list 10 10 10 10))
=> (10 10 10 10)

(map-into a #'+ a b)
=> (11 12 13 14)

a
=> (11 12 13 14)

b
=> (10 10 10 10)

(setq k '(one two three))
=> (one two three)

(map-into a #'cons k a)
=> ((one . 11) (two . 12) (three . 13) 14)

(let ((x 0))

     (map-into a

         (lambda () (setq x (+ x 2)))))

=> (2 4 6 8)

a
=> (2 4 6 8)

18 Stream class

Streams are instances of the <stream> class. They are objects that serve as sources or sinks of data.

XE "streamp"(streamp obj) -> boolean
function

Returns t if obj is a stream (instance of class <stream>); otherwise, returns nil. obj may be any ISLISP object. streamp is unaffected by whether its argument, if an instance of the class <stream>, is open or closed.

Example:
(streamp (standard-input))
=> t

(streamp '())
=> nil

XE "open-stream-p"(open-stream-p obj) -> boolean
function

Returns t if obj is an open stream; otherwise, returns nil.

XE "input-stream-p"(input-stream-p obj) -> boolean
function

Returns t if obj is a stream that can handle input operations; otherwise, returns nil.

Example:
(input-stream-p (standard-input))
=> t

(input-stream-p (standard-output))
=> nil

(input-stream-p '(a b c))
=> nil

XE "output-stream-p"(output-stream-p obj) -> boolean
function

Returns t if obj is a stream that can handle output operations; otherwise, returns nil.

Example:
(output-stream-p (standard-output))
=> t

(output-stream-p (standard-input))
=> nil

(output-stream-p "hello")
=> nil

XE "standard-input"(standard-input) -> <stream>
function

XE "standard-output"(standard-output) -> <stream>
function

XE "error-output"(error-output) -> <stream>
function

The function standard-input returns the stream used as the default stream for input functions.

The function standard-output returns the stream used as the default stream for output functions.

The function error-output returns the stream used as the default stream for warnings and non-interactive error messages.

The value returned by each of these functions is initially implementation-defined, but can be dynamically bound; see with-standard-input, with-standard-output, and with-error-output.

XE "with-standard-input"(with-standard-input stream-form form*) -> <object>
special operator

XE "with-standard-output"(with-standard-output stream-form form*) -> <object>
special operator

XE "with-error-output"(with-error-output stream-form form*) -> <object>
special operator

These macros first evaluate their stream-form argument to produce a stream s and then evaluate their body forms in a dynamic environment where the corresponding function (standard-input, standard-output, or error-output) returns the stream s.

Example:
(with-standard-input (create-string-input-stream "this is a string")

     (list (read) (read)))

=> (this is)

18.1 Streams to Files

Streams might be connected to files or devices. Given a name, a stream can be created that is connected to a file having that name. File systems in which files are not named are not supported.

A filename is represented by a string. The correct syntax of filenames is implementation defined.

Streams to files are created by open-input-file, open-output-file, open-io-file, with-open-input-file, with-open-output-file, and with-open-io-file.

XE "open-input-file"(open-input-file filename [element-class]) -> <stream>
function

XE "open-output-file"(open-output-file filename [element-class]) -> <stream>
function

XE "open-io-file"(open-io-file filename [element-class]) -> <stream>
function

open-input-file opens a file for input only. open-output-file opens a file for output only.

open-io-file opens a file for both input and output.

An error shall be signaled if filename is not a string. The corresponding file is opened in an implementation-defined way. These functions return an instance of the <stream> class connected to the file specified by filename.

The element-class can be either the class <character> (the default) or a positive integer that is a number of bits in a byte to be used for a binary stream. All implementations must support a value of 8 (denoting integer byte values from 0 to 255), but some implementations might support other byte sizes as well.

Note: When a binary stream is used, the order of bits within bytes and bytes within words (i.e., whether it is right to left or left to right) are each implementation defined.
Example:
(open-input-file "example.lsp" 8)

=> implementation-defined

XE "with-open-input-file"(with-open-input-file (name filename [element-class]) form*) -> <object>
special operator

XE "with-open-output-file"(with-open-output-file (name filename [element-class]) form*) -> <object>
special operator

XE "with-open-io-file"(with-open-io-file (name filename [element-class]) form*) -> <object>
special operator

Each of these special forms opens a stream to a file (using open-input-file, open-output-file, or open-io-file, respectively), evaluates the forms, closes the file, and returns the value returned by the last form (or nil if there are no forms).

The filename and element-class are evaluated and passed as arguments to the appropriate file-opening function. The stream created by opening the file is bound to the variable named by name (as if a let was used), so the identifier name can be used to refer to the stream.

The stream is closed on exit, whether or not exit from this macro is normal. For this reason, these special forms are usually preferred over the corresponding functions for opening and closing files.

Example:
(with-open-output-file (outstream "example.dat")

(format outstream "hello"))

=> nil

(with-open-input-file (instream "example.dat")

(read instream))

=> hello

XE "close"(close stream) -> implementation defined
function

The function close closes the stream stream. If stream is closed it may no longer be used in input or output operations. Closing a file stream ends the association between the stream and its file. If the stream was already closed this function performs nothing. The result value is implementation defined. An error shall be signaled if stream is not a stream XE "error-id. domain-error" (error-id. domain-error).
Example:
(defglobal input-str (open-input-file "data.lsp"))

=> input-str

(close input-str)
=> implementation-defined

(close input-str)
=> implementation-defined

XE "finish-output"(finish-output stream) -> <null>
function

Completes any pending output to the destination designated by stream. Waits until the pending output is complete and then returns nil. For instance, pending output might be stored in a buffer; in this case finish-output forces the buffer to be written to the stream's destination. An error shall be signaled if stream is not a stream that can handle output operations XE "error-id. domain-error"(error-id. domain-error).
Example:
(defglobal output-str (open-output-file "data.lsp"))

=> output-str

(finish-output output-str)
=> nil

18.2 Other Streams

Non-file streams can be created by the following functions:

create-string-input-stream
create-string-output-stream

A string stream is a stream that is simply a string. For input, the reading functions construct objects from a character sequence obtained from an input string. For output, the printing functions deliver characters which are collected to a result string.

XE "create-string-input-stream"(create-string-input-stream string) -> <stream>
function

Creates and returns an input stream from the string. An error shall be signaled if string is not a string XE "error-id. domain-error"(error-id. domain-error).

Example:
(let ((str (create-string-input-stream "this is a string")))

     (list (read str) (read str) (read str)))

=> (this is a)

XE "create-string-output-stream"(create-string-output-stream) -> <stream>
function

This function creates and returns a string output stream. The output to a string stream can be retrieved by get-output-stream-string.

Example:
(let ((str (create-string-output-stream)))

     (format str "hello")

     (format str "world")

     (get-output-stream-string str))

=> "helloworld"

XE "get-output-stream-string"(get-output-stream-string stream) -> <string>
function

Returns a string containing all characters written to stream since the last call to this function or since the creation of the stream, if this function has not been called with stream before. An error shall be signaled if stream is not a stream created with create-string-output-stream XE "error-id. domain-error"(error-id. domain-error).
Example:
(let ((out-str (create-string-output-stream)))

     (format out-str "This is a string")

(let ((part1 (get-output-stream-string out-str)))

     (format out-str "right!")

     (list part1 (get-output-stream-string))))

=> ("This is a string" "right!")

19 Input and Output

19.1 Argument Conventions for Input Functions

Most of the reader functions that do input treat their arguments as follows:

When end-of-stream is reached (i.e., an attempt is made to read a stream element immediately after the last one in the stream), the behavior depends on the value of eos-error-p (which defaults to t): if eos-error-p is nil, the function returns the eos-value (which defaults to nil); otherwise, an error shall be signaled XE "error-id. end-of-stream"(error-id. end-of-stream).
If the input-stream is not specified, the standard input stream (the value returned by the standard-input function) is used. An error shall be signaled if an input-stream does not satisfy the input-stream-p predicate XE "error-id. not-an-imput-stream"(error-id. not-an-input-stream).

19.2 Character I/O

The following operations are used for character I/O. An error shall be signaled if an attempt is made to perform a character I/O operation on a stream that does not handle such operations.

XE "read"(read [input-stream [eos-error-p [eos-value]]]) -> <object>
function

The function read returns the ISLISP object that is created as the result of reading its textual representation from the stream input-stream.

See §19.1 for information about how input-stream, eos-error-p, and eos-value are treated.

Example:
(defglobal str (create-string-input-stream "hello #(1 2 3) 123 #\\A"))

=> str

(read str)
=> hello

(read str)
=> #(1 2 3)

(read str)
=> 123

(read str)
=> #\A

(read str nil "the end")
=> "the end"

XE "read-char"(read-char [input-stream [eos-error-p [eos-value]]]) -> <object>
function

read-char reads a single character from input-stream and returns the corresponding character object.

See §19.1 for information about how input-stream, eos-error-p, and eos-value are treated.

Example:
(defglobal str (create-string-input-stream "hi"))

=> str

(read-char str)
=> #\h

(read-char str)
=> #\i

(read-char str) an error shall be signaled

XE "preview-char"(preview-char [input-stream [eos-error-p [eos-value]]]) -> <object>
function

Returns the next character of input-stream, if any. The character is not consumed; the next attempt to peek at or read a character from the stream sees that same character.

See §19.1 for information about how input-stream, eos-error-p, and eos-value are treated.

Example:
(let ((s (create-string-input-stream "foo")))

     (list (preview-char s) (read-char s) (read-char s)))

=> (#\f #\f #\o)

XE "read-line"(read-line [input-stream [eos-error-p [eos-value]]]) -> <object>
function

Reads a line of characters from input-stream and returns them as a string (without the newline character at the end of the line). If an end-of-stream is reached before the next newline character and a non-empty line has been read prior to the end-of-stream, that line is returned.

See §19.1 for information about how input-stream, eos-error-p, and eos-value are treated.

Example:
(with-open-output-file (out "newfile")

     (format out "This is an example")

     (format out "~%")

     (format out "look at the output file"))

=> nil

(defglobal str (open-input-file "newfile"))

=> str

(read-line str)
=> "This is an example"

(read-line str)
=> "look at the output file"

XE "stream-ready-p"(stream-ready-p input-stream) -> boolean
function

Returns t if an attempt to obtain the next element from the stream will not cause the processor to have to wait; otherwise, returns nil. An error shall be signaled if stream is not a stream that can handle input operations XE "error-id. domain-error"(error-id. domain-error).

Example:
(with-open-output-file (out "testfile.dat")

     (format out "This is an example"))) nil

(with-open-input-file (in "testfile.dat")

     (stream-ready-p in))
=> t

XE "format"(format output-stream format-string obj*) -> <null>
function

XE "format-char"(format-char output-stream char) -> <null>
function

XE "format-float"(format-float output-stream float) -> <null>
function

XE "format-fresh-line"(format-fresh-line output-stream) -> <null>
function

XE "format-integer"(format-integer output-stream integer radix) -> <null>
function

XE "format-object"(format-object output-stream obj escape-p) -> <null>
function

XE "format-tab"(format-tab output-stream column) -> <null>
function

The function format has the side-effect of printing according to format-string. It returns nil. An error shall be signaled if the output-stream parameter does not satisfy the output-stream-p predicate XE "error-id. not-an-output-stream"(error-id. not-an-output-stream). An error shall be signaled if format-string is not a string XE "error-id. domain-error"(error-id. domain-error). The following is a summary of all the available format directives:

obj refers to the next item of the set of obj* to be processed.

~A
Aesthetic: The obj is any object. obj is printed as it would with ~S, but without escape characters. Characters are output directly without any conversion. That is, the output generated using this format directive is suitable for being read by a human reader.

This effect is implemented by (format-object output-stream obj nil).

~B
Binary: An error shall be signaled if obj is not an integer. obj is printed in binary radix (radix 2).

This effect is implemented by (format-integer output-stream obj 2).

~C
Character: An error shall be signaled if obj is not a character. obj is output directly without any conversion.

This effect is implemented by (format-char output-stream obj).

~D
Decimal: An error shall be signaled if obj is not an integer. obj is printed in decimal radix (radix 10).

This effect is implemented by (format-integer output-stream obj 10).

~G
General floating point: An error shall be signaled if obj is not a number. obj is printed as a float.

This effect is implemented by (format-float output-stream obj).

~O
Octal: An error shall be signaled if obj is not an integer. obj is printed in octal radix (radix 8).

This effect is implemented by (format-integer output-stream obj 8).

~nR
Radix: An error shall be signaled if obj is not an integer. obj is printed in radix n (which must be between 2 and 36, inclusive).

This effect is implemented by (format-integer output-stream obj n).

~S
S-expression: obj is any object. This format directive outputs the textual representation of obj, with escape characters as needed. That is, the output generated using this format directive is suitable for input to the function read.

This effect is implemented by (format-object output-stream obj t).

~nT
Tab: output enough spaces to move to column n (where column 0 represents the left margin). If already at or beyond column n, one space is output. If an implementation cannot determine the current column position, the behavior is implementation defined, but at least one space will be output.

This effect is implemented by (format-tab output-stream n).

~X
Hexadecimal: An error shall be signaled if obj is not an integer. obj is printed in hexadecimal radix (radix 16).

This effect is implemented by (format-integer output-stream obj 16).

~% 
newline: output a #\newline character;

This effect is implemented by (format-char output-stream #\newline).

~&
conditional newline: output a #\newline character if it cannot be determined that the output stream is at the beginning of a fresh line;

This effect is implemented by (format-fresh-line output-stream).

~~
tilde: output a tilde (~).

This effect is implemented by (format-char output-stream #\~).

Example:
(format output-stream "No result")
=> nil

Output is: No result

(format output-stream "The result is ~A and nothing else." "meningitis")

=> nil

Output is: The result is meningitis and nothing else.

(format output-stream "The result i~C" #\s)

=> nil

Output is: The result is

(format output-stream "The results are ~S and ~S." 1 #\a)

=> nil

Output is: The results are 1 and #\a.

(format output-stream "Binary code ~B" 150)

=> nil

Output is: Binary code 10010110

(format output-stream "permission ~O" 493)

=> nil

Output is: permission 755

(format output-stream "You ~X ~X" 2989 64206)

=> nil

Output is: You BAD FACE

(progn

   (format output-stream "~&Name ~10Tincome ~20Ttax~%")

   (format output-stream "~A ~10T~D ~20T~D" "Grummy" 23000 7500))

=> nil

Output is: Name income tax

Grummy 23000 7500

(format output-stream "This will be split into~%two lines.")

=> nil

Output is: This will be split into

two lines.

(format output-stream "This is a tilde: ~~")

=> nil

Output is: This is a tilde: ~

19.3 Binary I/O

The following operations are used for binary I/O. An error shall be signaled if an attempt is made to perform a binary I/O operation on a stream that does not handle such operations.

XE "read-byte"(read-byte input-stream [eos-error-p [eos-value]]) -> <integer>
function

Reads a byte from the input-stream and returns it. The number of bits in a byte is determined by the stream element type of the input-stream; see open-input-file.

See §19.1 for information about how input-stream, eos-error-p, and eos-value are treated.

Example:
;; This example assumes 8-bit byte codes are stored in files.

(defglobal byte-example (open-output-stream "byte-ex"))

=> byte-example

(format byte-example "hello")
=> nil

(close byte-example)

=> implementation-defined
(setq byte-example (open-input-stream "byte-ex" 8))

=> implementation-defined

(read-byte byte-example)
=> 104 (implementation-defined)
(read-byte byte-example)
=> 101 (implementation-defined)
(read-byte byte-example)
=> 108 (implementation-defined)
(read-byte byte-example)
=> 108 (implementation-defined)
(read-byte byte-example)
=> 111 (implementation-defined)
XE "write-byte"(write-byte z output-stream) -> <integer>
function

Writes z to the output-stream and returns it. An error shall be signaled if z is not an integer in the range appropriate to the stream element type of output-stream or if output-stream is not a stream capable of handling output operations XE "error-id. domain-error"(error-id. domain-error).

Example:
(let ((out-str (open-output-stream "byte-example" 8)))

     (write-byte #b101 out-str)

     (close out-str))
=> implementation-defined
20 Files

XE "probe-file"(probe-file filename) -> boolean
function

Returns t if the file specified by filename exists; otherwise, returns nil. An error shall be signaled if filename is not a string XE "error-id. domain-error"(error-id. domain-error).
Example:
(probe-file "notexist.lsp")
=> nil

(defglobal new-file (open-output-file "notexist.lsp"))

=> new-file

(close new-file)

=> implementation-defined
(probe-file "notexist.lsp")
=> t

XE "file-position"(file-position stream) -> <integer>
function

Returns the file position associated with stream.

A file position is a non-negative integer that represents a position in the stream. For binary streams, the file position represents the number of preceding bytes in the stream. It is increased by one each time one of the following is done:

(read-byte stream)

(write-byte z stream)

For character streams, the file position is increased by an implementation-defined non-negative amount each time one of the following is done:

(format stream. .).

(format-char stream char)

(format-float stream float)

(format-fresh-line stream)

(format-integer stream integer radix)

(format-object stream obj escape-p)

(format-tab stream column)

(read-char stream)

(read-line stream)

(read stream)
(report-condition condition stream)
The amount may depend on the output and on the file position itself. It is implementation defined which integer represents the first element of the file. An error shall be signaled if stream is not a stream to or from a file XE "error-id. domain-error"(error-id. domain-error).
Example:
;; This example assumes 8-bit byte codes are stored in files.

(defglobal example (open-output-file "example.lsp"))

=> example

(format example "hello")
=> nil

(close example)
=> implementation-defined
(setq example (open-input-stream "example.lsp" 8))

=> implementation-defined
(file-position example)
=> 0 (implementation-defined)
(read-byte example)
=> 104 (implementation-defined)
(file-position example)
=> 1

XE "set-file-position"(set-file-position stream z) -> <integer>
function

Attempts to change the file position (see file-position) of the stream stream to z. If it is not possible to move to the exact position z, some implementation-defined motion within the file might still be performed. The value returned is the new file position, which might or might not be z.

An error shall be signaled if stream is not a stream to or from a file, or if z is not a non-negative integer XE "error-id. domain-error"(error-id. domain-error).

Example:
(set-file-position example 4)
=> 4

XE "file-length"(file-length filename element-class) -> <object>
function

Returns the length of the file named by filename, or returns nil if the length cannot be determined. The element-class determines the units. An error shall be signaled if filename is not a string XE "error-id. domain-error"(error-id. domain-error).
Example:
(file-length "file27.dat" 8)
=> 25

;; Implementations are not required to support byte size 2.

(file-length "file27.dat" 2)
=> 100

21 Condition System

The condition system, sometimes called the "error system," is a facility which permits problem situations detected at runtime to be represented and resolved while still under the control of a conforming program.

21.1 Conditions

When a problem situation is detected, a representation of that situation called a XE "condition"condition (or sometimes a "condition object" to emphasize its nature as an ordinary ISLISP object) is constructed and the situation represented by the condition is announced by a process called XE "signaling"signaling. This signaling process allows a dynamically established XE "handler"handler an opportunity to resolve the problem.

Figure 1 shows an inheritance graph for the various condition classes.

Some condition classes require initialization arguments when using create so that associated data can be provided. For more information, see §21.3.

Error conditions and those conditions that represent situations involving dynamically detected program errors are collectively called XE "error conditions"error conditions. Conditions that represent implementation limitations that may not be symptomatic of program errors are called XE "serious conditions"serious conditions.

Note: In some dialects of LISP a meaning is assigned to the idea of conditions that are not serious. Such conditions are beyond the scope of this document; hence the use of the class name <serious-condition> as the most general kind of condition defined herein.
21.2 Signaling and Handling Conditions

When a condition is signaled, the XE "active handler"active handler is called with one argument, a condition which represents the situation. An initial active handler will have been established by the system; it will provide some implementation-defined action (such as return to toplevel, program exit, or entry into an interactive debugger). User programs may also establish handlers (see with-handler).

At any given time, only one handler is active. Establishing a new handler with with-handler shadows any previously active handler. This newly established handler is active throughout execution of its associated body of code unless shadowed by another use of with-handler.

If called, a handler function will execute in the dynamic environment of the call to signal-condition, except that the handler context is re-bound to match the dynamic handler state that was current at the point the handler function was established as the active handler.

Note: This means that handlers are not expected to handle errors in themselves. If a programmer wishes to have a handler handle its own errors, he might use labels to allow the function a way to refer to itself and might have the function re-establish itself as a handler within its own body.
When a handler is called, it must XE "handle"handle the condition by transferring control to a point outside of the call to signal-condition. Such a transfer of control might be made explicitly by use of go, throw, or return-from or implicitly by use of an abstract operation such as continue-condition that has an equivalent effect. The consequences are undefined if the handler returns normally; the handler is required to transfer control.

A handler may defer to previously established handlers by calling signal-condition on the condition object which it received as an argument.

21.2.1 Operations relating to Condition Signaling

XE "error"(error error-string obj*) -> <object>
function

An error shall be signaled.

error-string and the objs are advice to the implementation about how the error message might be textually described (using format), but whether or not that advice is used is implementation defined.

This is equivalent to:

(signal-condition

       (create (class <simple-error>)

               'format-string error-string

               'format-arguments (list obj*)))

       nil)

XE "cerror"(cerror continue-string error-string obj*) -> <object>
function

Like error, but the error that it signals is "continuable" (see continue-condition). The extra argument continue-string describes what happens if this function returns.

This is equivalent to:

(signal-condition

       (create (class <simple-error>)

               'format-string error-string

               'format-arguments (list obj*))
       (let ((str (create-string-output-stream)))

            (format str continue-string obj*)

            (get-output-stream-string str)))

XE "signal-condition"(signal-condition condition continuable) -> <object>
function

Invokes the condition handling system on condition.

If continuable is nil, the results of attempting to "continue" (see continue-condition) are not defined except that the call to signal-condition will not return normally.

If continuable is not nil, it will be possible to return from the call to signal-condition (see continue-condition). In this case, the specific value of continuable may be a string indicating the effect of continuing, or it may be the symbol t, indicating that an implementation-defined string such as "Continue with no special action." is to be used.

Example:
(signal-condition

       (create (class <simple-error>)

               'format-string "A ~A problem occurred."

               'format-arguments '(bad))

       nil)

21.2.2 Operations relating to Condition Handling

XE "ignore-errors"(ignore-errors form*) -> <object>
special operator

Establishes a handler for <error>, such that if an error occurs during execution of forms, ignore-errors will immediately return nil. Then it executes forms, returning the value returned by the last form (or nil if there were no forms) if execution terminates normally.

XE "report-condition"(report-condition condition stream) -> <condition> 

Presents a natural language description of condition to stream. This generic function may be specialized for user-defined condition classes.

XE "condition-continuable"(condition-continuable condition) -> <object>
function

Returns nil if condition is not continuable, or a string describing the effect of continuing otherwise.

XE "continue-condition"(continue-condition condition [value]) transfers control and data
function

"Continues" from condition by finding the call to signal-condition and arranging for it to perform a normal return of the value, which defaults to nil.

The consequences are undefined if the condition is not continuable.

XE "with-handler"(with-handler handler form*) -> <object>
special operator

Evaluates handler, which must yield a function (called the "handler function"). The handler function is established as active handler (see §21.2) and then the forms are executed. If execution of forms finishes normally, the value of the last form (or nil if there are no forms) is returned.

21.3 Data associated with Condition Classes

Some of the condition classes defined by ISLISP permit data to be associated with a condition object at its time of creation and later retrieved. Initialization arguments and accessors for such classes are defined here.

21.3.1 Arithmetic Errors

<arithmetic-error>
operation operation
operands operands
The operation is the function that was being performed, and the operands is a list of the arguments it received.

XE "arithmetic-error-operation"(arithmetic-error-operation arithmetic-error) -> <function>
function

XE "arithmetic-error-operands"(arithmetic-error-operands arithmetic-error) -> <list>
function

These functions return the operation and operands supplied as data when creating the arithmetic-error. An error shall be signaled if arithmetic-error is not a condition of class <arithmetic-error> XE "error-id. domain-error"(error-id. domain-error).
21.3.2 Domain Errors

<domain-error>
object object
expected-class expected-class
The object is the offending object, and the expected-class is the class that it was expected to be.

XE "domain-error"(domain-error-object domain-error) -> <object>
function

XE "domain-error-expected-class"(domain-error-expected-class domain-error) -> <class>
function

These functions return the object and expected-class supplied as data when creating the domain-error. An error shall be signaled if domain-error is not a condition of class <domain-error> XE "error-id. domain-error"(error-id. domain-error).
21.3.3 Parse Errors

<parse-error>
string string
expected-class expected-class
The string is the string that was being parsed, and the expected-class is the class that the textual notation in the string was expected to represent.

XE "parse-error-string"(parse-error-string parse-error) -> <string>
function

XE "parse-error-expected-class"(parse-error-expected-class parse-error) -> <class>
function

These functions return the string and expected-class supplied as data when creating the parse-error. An error shall be signaled if parse-error is not a condition of class <parse-error> XE "error-id. domain-error"(error-id. domain-error).
21.3.4 Simple Errors

<simple-error>
format-string format-string
format-arguments format-arguments
The format-string (a string) and format-arguments (a list of objects) are passed through to format to construct the error message. Each object in the list given as format-arguments becomes a separate data argument, obj, in the call to format.

XE "simple-error-format-string"(simple-error-format-string simple-error) -> <string>
function

XE "simple-error-format-arguments"(simple-error-format-arguments simple-error) -> <list>
function

These functions return the format-string and format-arguments supplied as data when creating the simple-error. An error shall be signaled if simple-error is not a condition of class <simple-error> XE "error-id. domain-error"(error-id. domain-error).
21.3.5 Stream Errors

<stream-error>
stream stream
The stream is the stream on which the error occurred.

XE "stream-error-stream"(stream-error-stream stream-error) -> <stream>
function

Returns the stream supplied as data when creating the stream-error. An error shall be signaled if stream-error is not a condition of class <stream-error> XE "error-id. domain-error"(error-id. domain-error).
21.3.6 Undefined Entity Errors

<undefined-entity>
name name
namespace namespace
The name is a symbol representing the identifier which was undefined. The namespace is one of the symbols variable, dynamic-variable, function, or class.

XE "undifined-entity-name"(undefined-entity-name undefined-entity) -> <symbol>
function

XE "undefinied-entity-namespace"(undefined-entity-namespace undefined-entity) -> <symbol>
function

These functions return the name and namespace supplied as data when creating the undefined-entity. An error shall be signaled if undefined-entity is not a condition of class <undefined-entity> XE "error-id. domain-error"(error-id. domain-error).
The result of undefined-entity-namespace will be one of the symbols variable, dynamic-variable, function, or class.

21.4 Error Identification

The following is a summary of all named errors in the language and the semantics associated with each error.

XE "error-id. arity-error"arity-error
Errors of this kind occur when a function is activated with a number of arguments that is not compatible with the number of parameters permitted by the function's definition. Errors of this kind are represented as conditions of class <program-error>.

XE "error-id. cannot-create-array"cannot-create-array
Errors of this kind occur when a request is made to allocate an array that cannot be allocated. Errors of this kind are represented as conditions of class <storage-exhausted>.

XE "error-id. cannot-create-cons"cannot-create-cons
Errors of this kind occur when a request is made to allocate a cons that cannot be allocated. Errors of this kind are represented as conditions of class <storage-exhausted>.

XE "error-id. cannot-create-list"cannot-create-list
Errors of this kind occur when a request is made to allocate a list that cannot be allocated. Errors of this kind are represented as conditions of class <storage-exhausted>.

XE "error-id. cannot-create-sequence"cannot-create-sequence
Errors of this kind occur if a function that produces a sequence (e.g., subseq) cannot allocate that sequence. Errors of this kind are represented as conditions of class <storage-exhausted>.
XE "error-id. cannot-create-string"cannot-create-string
Errors of this kind occur when a request is made to allocate a string that cannot be allocated. Errors of this kind are represented as conditions of class <storage-exhausted>.

XE "error-id. cannot-create-vector"cannot-create-vector
Errors of this kind occur when a request is made to allocate a vector that cannot be allocated. Errors of this kind are represented as conditions of class <storage-exhausted>.

XE "error-id. cannot-parse-number"cannot-parse-number
Errors of this kind occur when the string parameter received by the parse-number function cannot be classified as the textual representation of a number. Errors of this kind are represented as conditions of class <parse-error>.

XE "error-id. control-error"control-error
Errors of this kind occur when an attempt is made to leave a block more than once or when there is no outstanding catcher for a catch tag. Errors of this kind are represented as conditions of class <control-error>.

XE "error-id. division-by-zero"division-by-zero
Errors of this kind occur when an attempt is made to divide by zero. Errors of this kind are represented as conditions of class <division-by-zero>.

XE "error-id. domain-error"domain-error
Errors of this kind occur when the object given as argument to a standard function for which an argument class restriction is in effect is not an instance of the class to which the argument is restricted. Errors of this kind are represented as conditions of class <domain-error>.

XE "error-id. end-of-stream"end-of-stream
Errors of this kind occur when an attempt to read a character or byte at the end-of-stream when eos-error-p argument is true, or when an attempt to read a more complex object is about to begin (e.g., by read or read-line) but the end-of-stream is seen before parsing of that object has finished. Errors of this kind are represented as conditions of class <end-of-stream>.

XE "error-id. immutable-binding"immutable-binding
Errors of this kind occur when an attempt is made to change an immutable binding. Errors of this kind are represented as conditions of class <program-error>.

XE "error-id. improper-argument-list"improper-argument-list
Errors of this kind occur when the last argument given to the apply function is not a proper list. Errors of this kind are represented as conditions of class <program-error>.

XE "error-id. index-out-of-range"index-out-of-range
Errors of this kind occur when the index given to a function that accesses an element in a sequence (such as elt) is an integer outside the range of the sequence. Errors of this kind are represented as conditions of class <program-error>.

XE "error-id. not-an-imput-stream"not-an-input-stream
Errors of this kind occur when an attempt is made to read from a stream which is not an input stream. Errors of this kind are represented as conditions of class <domain-error>.

XE "error-id. not-an-output-stream"not-an-output-stream
Errors of this kind occur when an attempt is made to write to a stream which is not an output stream. Errors of this kind are represented as conditions of class <domain-error>.

XE "error-id. unbound-variable"unbound-variable
Errors of this kind occur when an attempt is made to access an unbound variable. Errors of this kind are represented as conditions of class <unbound-variable>.

XE "error-id. undefined-entity"undefined-entity
Errors of this kind occur when the entity denoted by an identifier does not exist when an access to that entity is made. Errors of this kind are represented as conditions of class <undefined-entity>.

XE "error-id. undefined-function"undefined-function
Errors of this kind occur when a function does not exist at its activation point. Errors of this kind are represented as conditions of class <undefined-function>.

Some errors that can occur have not been named in this document, and others might be added by the implementation. The above list should not be taken as an exhaustive list of all possible errors in the language.

22 Miscellaneous

XE "identity"(identity obj) -> <object>
function

Returns an object that is the same as obj under eql. obj may be any ISLISP object.

Example:
(identity '(a b c))
=> (a b c)

XE "get-universal-time"(get-universal-time) -> <integer>
function

Returns an approximation to the "current time" in Universal Time Format. The units are seconds. Universal Time Format represents time as an integer number of seconds since the beginning (i.e., midnight), January 1, 1900 UT (ignoring leap seconds). If get-universal-time is called twice, the first value shall be less than or equal to the second value.

No implementation is required to have a way to verify that the time returned is correct. However, an error shall be signaled if an implementation can determine that the time it would return would not be correct (e.g., it can determine that the clock was never initialized).

Example:
(get-universal-time)
=> 2901312000

XE "get-internal-run-time"(get-internal-run-time) -> <integer>
function

XE "get-internal-real-time"(get-internal-real-time) -> <integer>
function

get-internal-real-time returns as an integer the current time in internal time units, relative to an arbitrary time base. The difference between the values of two calls to this function is the amount of elapsed real time (i.e., clock time) between the two calls.

get-internal-run-time returns as an integer the current run time in internal time units. The precise meaning of this quantity is implementation defined. The difference between the values of two calls to this function is the amount of time between the two calls during which computational effort was expended on behalf of the executing program.

XE "internal-time-units-per-second"(internal-time-units-per-second) -> <integer>
function

internal-time-units-per-second returns the number of time units per second for the implementation.
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� This number, although belonging to the set of natural numbers, usually is considered as only a floating point number because of its representation.


� For the definition of if, see §6.4 below.


� For the definition of progn see §6.5 below.


� For the definition of lambda see 5.6.d.


� If the naming conventions were strictly observed, null would be named nullp; it is named null for historical


and compatibility reasons.
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