
Programming Language ISLISP

ISLISP Working Draft 20.3

This document was created Mon 31-Mar-1997 5:16pm EST.

Permission to copy all or part of the material in this document, ISLISP Working Draft 20.3,
without fee is granted provided that either it is reproduced without modi�cation, or else the
portion to be copied no longer identi�es itself (through its title or any running headers) as

ISLISP Working Draft 20.3.

The textual material that makes up this document, excluding the cover and any running headers

that establish the identity of the document itself as ISLISP Working Draft 20.3, is expressly
dedicated to the Public Domain, from which individual, copyrighted works (including any

resulting ISO standard) may be non-exclusively derived without fee or other restriction.

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Contents

1 Scope, Conventions and Compliance 1

1.1 Scope : 1

1.2 Normative References : 1

1.3 Notation and Conventions : 1

1.4 Lexemes : 4

1.4.1 Separators : 5

1.4.2 Comments : 5

1.5 Textual Representation : 5

1.6 Reserved Identi�ers : 6

1.7 De�nitions : 6

1.8 Errors : 9

1.8.1 Classes of error speci�cation : 9

1.8.2 Pervasive Error Types : 9

1.9 Compliance of ISLisp Processors and Text : 10

2 Classes 10

2.1 Metaclasses : 11

2.2 Prede�ned Classes : 13

2.3 Standard Classes : 14

2.3.1 Slots : 14

2.3.2 Creating Instances of Classes : 14

3 Scope and Extent 14

3.1 The Lexical Principle : 15

3.2 Scope of Identi�ers : 15

3.3 Some Speci�c Scope Rules : 15

3.4 Extent : 16

4 Forms and Evaluation 17

4.1 Forms : 17

4.2 Function Application Forms : 18

4.3 Special Forms : 18

4.4 De�ning Forms : 19

4.5 Macro Forms : 19

4.6 The Evaluation Model : 19

4.7 Functions : 20

4.8 De�ning Operators : 24

5 Predicates 26

5.1 Boolean Values : 26

5.2 Class Predicates : 26

5.3 Equality : 26

5.4 Logical Connectives : 29

6 Control Structure 30

6.1 Constants : 30

6.2 Variables : 31

6.3 Dynamic Variables : 35

6.4 Conditional Expressions : 36

6.5 Sequencing Forms : 38

6.6 Iteration : 39

6.7 Non-Local Exits : 40

ii

PUBLIC DOMAIN ISLISP Working Draft 20.3

6.7.1 Establishing and Invoking Non-Local Exits : : : : : : : : : : : : : : : : : : 40

6.7.2 Assuring Data Consistency during Non-Local Exits : : : : : : : : : : : : : : 44

7 Objects 45

7.1 De�ning Classes : 45

7.1.1 Determining the Class Precedence List : 48

7.1.2 Accessing Slots : 48

7.1.3 Inheritance of Slots and Slot Options : 49

7.2 Generic Functions : 49

7.2.1 De�ning Generic Functions : 50

7.2.2 De�ning Methods for Generic Functions : 51

7.2.2.1 Agreement on Parameter Specializers and Quali�ers : : : : : : : : 53

7.2.2.2 Congruent Lambda-Lists for all Methods of a Generic Function : : 53

7.2.3 Inheritance of Methods : 53

7.3 Calling Generic Functions : 53

7.3.1 Selecting the Applicable Methods : 54

7.3.2 Sorting the Applicable Methods : 54

7.3.3 Applying Methods : 55

7.3.3.1 Simple Method Combination : 55

7.3.3.2 Standard Method Combination : 55

7.3.4 Calling More General Methods : 56

7.4 Object Creation and Initialization : 57

7.4.1 Initialize-Object : 58

7.5 Class Enquiry : 59

8 Macros 60

9 Declarations and Coercions 61

10 Symbol class 63

10.1 Symbol Names : 63

10.1.1 Notation for Symbols : 64

10.1.2 Alphabetic Case in Symbol Names : 64

10.1.3 nil and () : 65

10.2 Symbol Properties : 65

10.3 Unnamed Symbols : 66

11 Number class 67

11.1 Number class : 67

11.2 Float class : 76

11.3 Integer class : 78

12 Character class 81

13 List class 83

13.1 Cons : 83

13.2 Null class : 85

13.3 List operations : 86

14 Arrays 90

14.1 Array Classes : 90

14.2 General Arrays : 91

14.3 Array Operations : 91

15 Vectors 94

iii

ISLISP Working Draft 20.3 PUBLIC DOMAIN

16 String class 95

17 Sequence Functions 98

18 Stream class 101

18.1 Streams to Files : 102

18.2 Other Streams : 104

19 Input and Output 105

19.1 Argument Conventions for Input Functions : 105

19.2 Character I/O : 106

19.3 Binary I/O : 110

20 Files 111

21 Condition System 113

21.1 Conditions : 113

21.2 Signaling and Handling Conditions : 114

21.2.1 Operations relating to Condition Signaling : : : : : : : : : : : : : : : : : : 114

21.2.2 Operations relating to Condition Handling : : : : : : : : : : : : : : : : : : 115

21.3 Data associated with Condition Classes : 116

21.3.1 Arithmetic Errors : 116

21.3.2 Domain Errors : 117

21.3.3 Parse Errors : 117

21.3.4 Simple Errors : 117

21.3.5 Stream Errors : 118

21.3.6 Unde�ned Entity Errors : 118

21.4 Error Identi�cation : 118

22 Miscellaneous 120

Index 122

iv

PUBLIC DOMAIN ISLISP Working Draft 20.3

This page intentionally left mostly blank.

v

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Introduction

The programming language ISLISP is a member of the LISP family. It is the result of cooperative

e�orts by the design committee.

The following factors inuenced the establishment of design goals for ISLISP:

1. A desire of the international LISP community to standardize on those features of LISP upon

which there is widespread agreement.

2. The existence of the incompatible dialects COMMON-LISP, EULISP, LE-LISP, and SCHEME

(mentioned in alphabetical order).

3. A desire to a�rm LISP as an industrial language.

This led to the following design goals for ISLISP:

1. ISLISP shall be compatible with existing LISP dialects where feasible.

2. ISLISP shall have as a primary goal to provide basic functionality.

3. ISLISP shall be object-oriented.

4. ISLISP shall be designed with extensibility in mind.

5. ISLISP shall give priority to industrial needs over academic needs.

6. ISLISP shall promote e�cient implementations and applications.

The design committee wishes to thank the many specialists who contributed to this document.

vi

PUBLIC DOMAIN ISLISP Working Draft 20.3

Programming Language ISLISP

1 Scope, Conventions and Compliance

1.1 Scope

1. Positive Scope

This document speci�es syntax and semantics of the computer programming language

ISLISP by specifying requirements for a conforming ISLISP processor and a conforming

ISLISP text.

2. Negative Scope

This document does not specify:

(a) the size or complexity of an ISLISP text that exceeds the capacity of any speci�c data

processing system or the capacity of a particular processor, nor the actions to be

taken when the corresponding limits are exceeded;

(b) the minimal requirements of a data processing system that is capable of supporting an

implementation of a processor for ISLISP;

(c) the method of preparation of an ISLISP text for execution and the method of

activation of this ISLISP text, prepared for execution;

(d) the typographical presentation of an ISLISP text published for human reading.

(e) extensions that might or might not be provided by the implementation.

1.2 Normative References

The following standards contain provisions which, through reference in this text, constitute

provisions of this document. At the time of publication, the editions indicated were valid. All

standards are subject to revision, and parties to agreements based on this document are

encouraged to investigate the possibility of applying the most recent editions of the standards

indicated below. Members of IEC and ISO maintain registers of currently valid International

Standards.

� ISO/IEC TR 10034: 1990, Guidelines for the preparation of conformity clauses in
programming language standards.

� IEEE standard 754-1985. IEEE standard for Binary oating point arithmetic. IEEE, New
York, 1985.

1.3 Notation and Conventions

For a clear de�nition of, and a distinction between, syntactic and semantic concepts, several

levels of description abstraction are used in the following.

1

ISLISP Working Draft 20.3 PUBLIC DOMAIN

There is a correspondence from ISLISP textual units to their ISLISP data structure

representations. Throughout this document the text and the corresponding ISLISP objects (data

structures) are addressed simultaneously. ISLISP text can be seen as an external speci�cation of

ISLISP data structures. To distinguish between the two representations di�erent concepts are

used. When textual representation is discussed, textual elements (such as identi�ers, literals, and
compound forms) are used; when ISLISP objects are discussed, objects (such as symbols and lists)
are used.

The constituents of ISLISP text are called forms. A form can be an identi�er, a literal, or a
compound form. A compound form can be a function application form, a macro form, a special
form, or a de�ning form.

An identi�er is represented by a symbol. A compound form is represented by a non-null list. A
literal represents neither a symbol nor a list, and so is neither an identi�er nor a compound form;
for example, a number is a literal.

An object is prepared for execution; this might include transformation or compilation,

including macro expansion. The method of preparation for execution and its result are not

de�ned in this document (with exception of the violations to be detected). After successful

preparation for execution the result is ready for execution. The combination of preparation for

execution and subsequent execution implements ISLISP's evaluation model. The term

\evaluation" is used because ISLISP is an expression language|each form has a value which is

used to compute the value of the containing form. The results obtained when an entity is

prepared for execution are designated throughout this document by the construction \prepared

entity"; e.g., \prepared form," \prepared special form."

Example: A \cond special form" becomes a \prepared cond" by preparation for execution.

In the examples, the metasymbol \)" designates the result of an actual evaluation. For example:

(+ 3 4)) 7

The metasymbol \!" identi�es the class that results from the evaluation of a form having a

given pattern. For example:

(+ i1 i2) ! <integer>

Given a form pattern (usually de�ned by its constant parts, the function name or special

operator), ! relates it to the class to which the result of the evaluation of all matching forms

belong.

Form patterns or forms which are equivalent are related by �.

The following notational conventions for form patterns are used:

(f-name argument*) ! result-class f kind

In this notation, words written in italics are non-terminal (pattern variables). f-name is always

terminal: Speci�c function names, special operators, de�ning form names, or generic function

names are always presented.

2

PUBLIC DOMAIN ISLISP Working Draft 20.3

An underlined term (like the name in a de�ning form) in this notation, indicates an expression

that is not evaluated. If a form might or might not be evaluated (like one of the then-form or

else-form in an if), this is indicated explicitly in the text.

Class names are uniformly denoted as follows: <class-name>. For example, <list> is the name

of a class; this is usually spoken aloud as \list class."

Notes, appearing as Note: note-text, in this document have no e�ect on the language. They are

for better understanding by the human reader.

Regarding the pattern variables and the extensions of above, the following conventions are also

adopted:

term+ denotes one or more occurrences of term;

term* denotes zero or more occurrences of term;

[term] denotes at most one occurrence of term, commonly one says that term
is optional;

fterm1 term2 : : :g denotes grouping of terms.

term1 j term2 j : : : denotes grouping of alternative terms.

The following naming conventions are used to denote forms whose values obey the respective

class restrictions:

array , array1, : : :arrayj, : : : <basic-array>

cons, cons1, : : :consj , : : : <cons>

list , list1, : : : listj, : : : <list>

obj , obj1, : : :objj , : : : <object>

sequence, sequence1, : : : sequencej , : : : <basic-vector> or <list> (see x17)

stream, stream1, : : :streamj, : : : <stream>

string , string1, : : :stringj, : : : <string>

char , char1, : : :charj , : : : <character>

function, function1, : : : functionj , : : : <function>

class, class1, : : : classj, : : : <class>

symbol , symbol1, : : : symbolj, : : : <symbol>

x , x1, : : :xj , : : : <number>

z , z1, : : :zj , : : : <integer>

In this document the conventions detailed below are used, except where noted:

3

ISLISP Working Draft 20.3 PUBLIC DOMAIN

-p Predicates|sometimes called \boolean functions"|usually have names that end in a -p.

Usually every class <name> has a characteristic function, whose name is built as name-p if

name is hyphenated (generic-function-p), or namep if name is not hyphenated

(symbolp). Note that not all functions whose names end with \p" are predicates.

create- Usually a built-in class <name> has a constructor function, which is called create-name.

def This is used as the pre�x of the de�ning operators.

set- Within this document, any functions named set-name are writers for a place, for which

there is a corresponding reader named name.

For any kind of entity in the language, the phrase \entity-kind name" refers to the entity of kind

entity-kind denoted by name. For example, the phrases \function name," \constant name," or

\class name" respectively mean the function, constant, or class denoted by name.

1.4 Lexemes

An ISLISP text is built up from lexemes. Lexemes are built up from at least the following

characters (see x12):

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 + - < > / * & = . ? _ ! $ % : @ [] ^ { } ~ #

Additional characters are implementation de�ned.

The following characters are individual lexemes (see x13.1 and x8):

() , ' `

The following character tuples (where n is a sequence of digits) are individual lexemes (see x4.7,
x8, and x14.1):

#' #(,@ #B #b #O #o #X #x #na #nA

The textual representations of symbols (see x10), numbers (see x11), characters (see x12), and
strings (see x16) are lexemes.

\ (single escape) and | (multiple escape) are special characters. They may occur in some

lexemes (identi�ers and string literals).

Other lexemes are separated by delimiters. Delimiters are separators along with the following

characters:

() ` , '

The e�ect of delimiting is disestablished inside a string (see x16) or inside a corresponding pair

of multiple escape characters (see x10) or for the character immediately following #\.

4

PUBLIC DOMAIN ISLISP Working Draft 20.3

1.4.1 Separators

Separators are as follows: blank, comments, newline, and an implementation-de�ned set of

characters, (e.g., tabs). Separators have no meaning and can be replaced by each other without

changing the meaning of the ISLISP text.

1.4.2 Comments

The character semicolon (;) is the comment begin character. That is, the semicolon and all the

characters up to and including the end-of-line form a comment.

A character sequence beginning with #| and ending with |# is a comment. Such comments may

be nested.

Being a separator, a comment cannot occur inside a lexeme.

1.5 Textual Representation

The textual representation of an object is machine independent. The following are some of the

textual representations of the ISLISP objects. This representation is readable by the read

function. Lexemes are described in x1.4

Null The object nil is the only object whose class is <null>. Upon input, it may be written as

nil or (). It is implementation de�ned whether nil prints as nil or ().

List Proper lists are those lists terminated by nil. Usually they are denoted as (obj1 obj2
: : :objn). A dotted list (i.e., a list whose last tail is not nil) appears as (obj1 obj2 : : :objn
. objn+1).

Character An instance of the <character> class is represented by #\?, where \?" is the character in

question. There are two special standard characters that are not represented in this way,

namely newline and space, whose representations are #\newline and #\space, respectively.

Cons A cons is expressed as (car . cdr), where the car and cdr are objects.

Integer An integer (radix 10) is represented as a sequence of digits optionally preceded by a + or -

sign. If the number is represented in binary radix (or in octal or hexadecimal) then the

textual representation is preceded by #b (or #o or #x, respectively).

Float A oating point number is written in one of the following formats:

[s]dd : : :d.dd : : :d

[s]dd : : :d.dd : : :dE[s]dd : : :d

[s]dd : : :d.dd : : :de[s]dd : : :d

[s]dd : : :dE[s]dd : : :d

[s]dd : : :de[s]dd : : :d

where s is either \+" or \-", and d is one of \0"{\9". For example: 987.12, +12.5E-13,

-1.5E12, 1E321.

1This number, although belonging to the set of natural numbers, usually is considered as only a oating point

number because of its representation.

5

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Vector A vector of class <general-vector> is written as #(obj1 : : : objn).

Array An array of class <general-array*> or <general-vector> can be written on input as #na

(where n is an integer indicating the number of dimensions of the array) followed by a

nested structure of sequences denoting the contents of the array. This structure is de�ned

as follows. If n = 1 the structure is simply (obj1 : : : objn). If n > 1 and the dimensions

are n1 n2 : : : , the structure is (str1 : : : strn1), where the stri are the structures of the n1
subarrays, each of which has dimensions (n2 : : :). As an example, the representation of

(create-array '(2 3 4) 5) is as follows:

#3a(((5 5 5 5) (5 5 5 5) (5 5 5 5)) ((5 5 5 5) (5 5 5 5) (5 5 5 5))).

On output (see format), arrays of class <general-vector> will be printed using #(...)

notation.

String A string is represented by the sequence of its characters enclosed in a pair of "'s. For

example: "abc". Special characters are preceded with a backslash as an escape character.

Symbol A named symbol is represented by its print name. Vertical bars (|) might need to enclose

the symbol if it contains certain special characters; see x10. The notation, if any, used for

unnamed symbols is implementation de�ned.

There are objects which do not have a textual representation, such as a class or an instance of

the <function> class.

1.6 Reserved Identi�ers

Symbols whose names contain a colon (:) or an ampersand (&) are reserved and may not be

used as identi�ers. Symbols whose names start with colon (:) are called keywords.

1.7 De�nitions

For the purposes of this document, the following de�nitions apply:

1.7.1 abstract class: A class that by de�nition has no direct instances.

1.7.2 activation: Computation of a function. Every activation has an activation point, an

activation period, and an activation end. The activator, which is a function application

form prepared for execution, starts the activation at the activation point.

1.7.3 accessor: Association of a reader and a writer for a slot of an instance.

1.7.4 binding: Binding has both a syntactic and a semantic aspect.

Syntactically, \binding" describes the relation between an identi�er and a binding ISLISP

form. The property of being bound can be checked textually by relating de�ning and

applied identi�er occurrences.

Semantically, \binding" describes the relation between a variable, its denoting identi�er,

and an object (or, the relation between a variable and a location). This relation might be

imagined to be materialized in some entity, the binding. Such a binding entity is

constructed at run time and destroyed later, or might have inde�nite extent.

1.7.5 class: Object, that determines the structure and behavior of a set of other objects, called

its instances. The behavior is the set of operations that can be performed on an instance.

6

PUBLIC DOMAIN ISLISP Working Draft 20.3

1.7.6 condition: An object that represents a situation that has been (or might be) detected by

a running program.

1.7.7 de�nition point: An identi�er represents an ISLISP object starting with its de�nition

point, which is a textual point of an ISLISP text.

1.7.8 direct instance: Every ISLISP object is direct instance of exactly one class, which is called

\its class". The set of all direct instances together with their behavior constitute a class.

1.7.9 dynamic: Having an e�ect that is determined only through program execution and that

cannot, in general, be determined statically.

1.7.10 dynamic variable: A variable whose associated binding is determined by the most

recently executed active block that established it, rather than statically by a lexically

apparent block according to the lexical principle.

1.7.11 evaluation: Computation of a form prepared for execution which results in a value and/or

a side e�ect.

1.7.12 execution: A sequence of (sometimes nested) activations.

1.7.13 extension: An implementation-de�ned modi�cation to the requirements of this document

that does not invalidate any ISLISP text complying with this document (except by

prohibiting the use of one or more particular spellings of identi�ers), does not alter the set

of actions which are required to signal errors, and does not alter the status of any feature

designated as implementation dependent.

1.7.14 form: A single, syntactically valid unit of program text, capable of being prepared for

execution.

1.7.15 function: An ISLISP object that is called with arguments, performs a computation

(possibly having side-e�ects), and returns a value.

1.7.16 generic function: Function whose application behavior is determined by the classes of

the values of its arguments and which consists { in general { of several methods.

1.7.17 identi�er: A lexical element (lexeme) which designates an ISLISP object. In the data

structure representation of ISLISP texts, identi�ers are denoted by symbols.

1.7.18 immutable binding: A binding is immutable if the relation between an identi�er and the

object represented by this identi�er cannot be changed. It is a violation if there is attempt

to change an immutable binding (error-id. immutable-binding).

1.7.19 immutable object: An object is immutable if it is not subject to change, either because

no operator is provided that is capable of e�ecting such change, or because some constraint

exists which prohibits the use of an operator that might otherwise be capable of e�ecting

such a change. Except as explicitly indicated otherwise, a conforming processor is not

required to detect attempts to modify immutable objects; the consequences are unde�ned

if an attempt is made to modify an immutable object.

1.7.20 implementation de�ned: A feature, possibly di�ering between di�erent ISLISP

processors, but completely de�ned for every processor.

1.7.21 implementation dependent: A feature, possibly di�ering between di�erent ISLISP

processors, but not necessarily de�ned for any particular processor.

Note: A conforming ISLISP text must not depend upon implementation-dependent features.

1.7.22 inheritance: Relation between a class and its superclass which maps structure and

behavior of the superclass onto the class. ISLISP supports a restricted form of multiple

inheritance; i.e., a class may have several superclasses at once.

7

ISLISP Working Draft 20.3 PUBLIC DOMAIN

1.7.23 instance (of a class): Either a direct instance of a class or an instance of one of its

subclasses.

1.7.24 literal: An object whose representation occurs directly in a program as a constant value.

1.7.25 metaclass: A class whose instances are themselves classes.

1.7.26 method: Case of a generic function for a particular parameter pro�le, which de�nes the

class-speci�c behavior and operations of the generic function.

1.7.27 object: An object is anything that can be created, destroyed, manipulated, compared,

stored, input, or output by the ISLISP processor. In particular, functions are ISLISP objects.

Objects that can be passed as arguments to functions, can be returned as values, can be

bound to variables, and can be part of structures, are called �rst-class objects.

1.7.28 operator: the �rst element of a compound form, which is either a reserved name that

identi�es the form as a special form, or the name of a macro, or a lambda expression, or

else an identi�er in the function namespace.

1.7.29 parameter pro�le: Parameter list of a method, where each formal parameter is

accompanied by its class name. If a parameter is not accompanied by a class name, it

belongs to the most general class.

1.7.30 place: Objects can be stored in places and retrieved later. Places are designated by forms

which are permitted as the �rst argument of setf. If used this way an object is stored in

the place. If the form is not used as �rst argument of setf the stored object is retrieved.

The cases are listed in the description of setf.

1.7.31 position:

(a) argument position: Occurrence of a text unit as an element in a form excluding the

�rst one.

(b) operator position: Occurrence of a text unit as the �rst element in a form.

1.7.32 process: The execution of an ISLISP text prepared for execution.

1.7.33 processor: A system or mechanism, that accepts an ISLISP text (or an equivalent data

structure) as input, prepares it for execution, and executes the result to produce values and

side e�ects.

1.7.34 program: An aggregation of expressions to be evaluated, the speci�c nature of which

depends on context. Within this document, the term \program" is used only in an abstract

way; there is no speci�c syntactic construct that delineates a program.

1.7.35 scope: The scope of an identi�er is that textual part of a program where the meaning of

that identi�er is de�ned; i.e., there exists an ISLISP object designated by this identi�er.

1.7.36 slot: A named component of an instance which can be accessed using the slot accessors.

The structure of an instance is de�ned by the set of its slots.

1.7.37 text: A text that complies with the requirements of this document (i.e., with the syntax

and static semantics of ISLISP). An ISLISP text consists of a sequence of toplevel forms.

1.7.38 toplevel form: Any form that either is not nested in any other form or is nested only in

progn forms.

1.7.39 toplevel scope: The scope in which a complete ISLISP text unit is processed.

1.7.40 writer: A method associated with a slot of a class, whose task is to bind a value with a

slot of an instance of that class.

8

PUBLIC DOMAIN ISLISP Working Draft 20.3

1.8 Errors

An error is a situation arising during execution in which the processor is unable to continue

correct execution according to the semantics de�ned in this document. The act of detecting and

reporting such an error is called signaling the error.

A violation is a situation arising during preparation for execution in which the textual

requirements of this document are not met. A violation shall be detected during preparation for

execution.

1.8.1 Classes of error speci�cation

The wording of error speci�cation in this document is as follows:

(a) \an error shall be signaled"

An implementation shall detect an error of this kind no later than the completion of

execution of the form having the error, but might detect them sooner (e.g., when the code

is being prepared for execution).

Evaluation of the current expression shall stop. It is implementation de�ned whether the

entire running process exits, a debugger is entered, or control is transferred elsewhere

within the process.

(b) \the consequences are unde�ned"

This means that the consequences are unpredictable. The consequences may range from

harmless to fatal. No conforming ISLISP text may depend on the results or e�ects. A

conforming ISLISP text must treat the consequences as unpredictable. In places where

\must," \must not," or \may not" are used, then this is equivalent to stating that \the

consequences are unde�ned" if the stated requirement is not met and no speci�c

consequence is explicitly stated. An implementation is permitted to signal an error in this

case.

For indexing and cross-referencing convenience, errors in this document have an associated error
identi�cation label, notated by text such as \(error-id. sample)." The text of these labels has no

formal signi�cance to ISLISP texts or processors; the actual class of any object which might be

used by the implementation to represent the error and the text of any error message that might

be displayed is implementation dependent.

1.8.2 Pervasive Error Types

Most errors are described in detail in the contect in which they occur. Some error types are so

pervasive that their detailed descriptions are consolidated here rather than repeated in full detail

upon each occurrence.

1. Domain error: an error shall be signaled if the object given as argument of a standard

function for which a class restriction is in e�ect is not an instance of the class which is

required in the de�nition of the function (error-id. domain-error).

9

ISLISP Working Draft 20.3 PUBLIC DOMAIN

2. Arity error: an error shall be signaled if a function is activated with a number of

arguments which is di�erent than the number of parameters as required in the function

de�nition (error-id. arity-error).

3. Unde�ned entity error: an error shall be signaled if the entity denoted by an identi�er does

not exist when a reference to that entity is made (error-id. unde�ned-entity). Two
commonly occuring examples of this type of error are unde�ned-function and

unbound-variable.

This list does not exhaust the space of error types. For a more complete list, see x21.4.

1.9 Compliance of ISLisp Processors and Text

An ISLISP processor complying with the requirements of this document shall

(a) accept and implement all features of ISLISP speci�ed in this document.

(b) reject any text that contains any textual usage which this document explicitly de�nes to be

a violation (see x1.8).

(c) be accompanied by a document that provides the de�nitions of all implementation-de�ned

features.

(d) be accompanied by a document that separately describes any features accepted by the

processor that are not speci�ed in this document; these extensions shall be described as

being \extensions to ISLISP as speci�ed by ISLISP Working Draft 20.3."

A complying ISLISP text shall not rely on implementation-dependent features. However, a

complying ISLISP text may rely on implementation-de�ned features required by this document.

A complying ISLISP text shall not attempt to create a lexical variable binding for any named

constant de�ned in this document. It is a violation if any such attempt is made.

2 Classes

In ISLISP, data types are covered by the class system. A class is an object that determines the

structure and behavior of a set of other objects, which are called its instances. Every ISLISP

object is an instance of a class. The behavior is the set of operations that can be performed on

an instance.

A class can inherit structure and behavior from other classes. A class whose de�nition refers to

other classes for the purpose of inheriting from them is said to be a subclass of each of those

classes. The classes that are designated for purposes of inheritance are said to be superclasses

of the inheriting class.

A class can be named by an identi�er. For example, this identi�er can be used as a parameter

specializer in method de�nitions. The class special form can be used to refer to access the class

object corresponding to its name.

10

PUBLIC DOMAIN ISLISP Working Draft 20.3

A class C1 is a direct superclass of a class C2 if C2 explicitly designates C1 as a superclass in

its de�nition, or if C1 is de�ned by this document to be a direct superclass of C2 (for example,

by indenting C2 under C1 in Figure 1). In this case C2 is a direct subclass of C1. A class Cn is

a superclass of a class C1 if there exists a series of classes C2; : : : ; Cn�1 such that Ci+1 is a

direct superclass of Ci for 1 � i < n. In this case, C1 is a subclass of Cn. A class is considered

neither a superclass nor a subclass of itself. That is, if C1 is a superclass of C2, then C1 6= C2.

The set of classes consisting of some given class C along with all of its superclasses is called \C

and its superclasses."

If a user-de�ned class C inherits from two classes, C1 and C2, the only superclasses that C1 and

C2 may have in common are <standard-object> or <object>. This allows a restricted form of

multiple inheritance.

Every ISLISP object is a direct instance of exactly one class which is called \its" class.

An instance of a class is either a direct instance of that class or an instance of one of its

subclasses.

Classes are organized into a directed acyclic graph de�ned by the subclass relation. The

nodes are classes and there is an edge from C1 to C2 i� C1 is direct subclass of C2. This graph is

called the inheritance graph. It has as root the class <object>, the only class with no superclass.

Therefore it is the superclass of every class except itself. The class named <standard-object> is

an instance of the class <standard-class> and is a superclass of every class that is an instance

of <standard-class> except itself.

Each class has a class precedence list, which is a total ordering on the set of the given class

and its superclasses. The total ordering is expressed as a list ordered from most speci�c to least

speci�c. The class precedence list is used in several ways. In general, more speci�c classes can

shadow, or override, features that would otherwise be inherited from less speci�c classes. The

method selection and combination process uses the class precedence list to order methods from

most speci�c to least speci�c.

2.1 Metaclasses

Classes are represented by objects that are themselves instances of classes. The class of the class

of an object is termed the metaclass of that object. The term metaclass is used to refer to a

class that has instances that are themselves classes.

The metaclass determines the form of inheritance used by the classes that are its instances and

the representation of the instances of those classes.

The ISLISP Object System provides the following prede�ned metaclasses:

� The class <standard-class> is the default class of classes de�ned by defclass.

� The class <built-in-class> is the class whose instances are classes that have special

implementations or restricted capabilities. For example, it is not possible to de�ne

subclasses of a built-in class.

11

ISLISP Working Draft 20.3 PUBLIC DOMAIN

<object>

<basic-array>

<basic-array*>

<general-array*>

<basic-vector>

<general-vector>

<string>

<built-in-class>

<character>

<function>

<generic-function>

<standard-generic-function>

<list>

<cons>

<null> ;; Note: <null> also inherits from <symbol>

<number>

<float>

<integer>

<serious-condition>

<error>

<arithmetic-error>

<division-by-zero>

<floating-point-overflow>

<floating-point-underflow>

<control-error>

<parse-error>

<program-error>

<domain-error>

<undefined-entity>

<unbound-variable>

<undefined-function>

<simple-error>

<stream-error>

<end-of-stream>

<storage-exhausted>

<standard-class>

<standard-object>

<stream>

<symbol>

<null> ;; Note: <null> also inherits from <list>

Subclasses appear indented under superclasses.

Figure 1. Class Inheritance

12

PUBLIC DOMAIN ISLISP Working Draft 20.3

2.2 Prede�ned Classes

The following classes are primitive classes in the class system (i.e., prede�ned classes that are

not metaclasses):

<arithmetic-error> <floating-point-underflow> <simple-error>

<basic-array> <function> <standard-generic-function>

<basic-array*> <general-array*> <standard-object>

<basic-vector> <general-vector> <storage-exhausted>

<character> <generic-function> <stream>

<cons> <integer> <stream-error>

<control-error> <list> <string>

<division-by-zero> <null> <symbol>

<domain-error> <number> <unbound-variable>

<end-of-stream> <object> <undefined-entity>

<error> <parse-error> <undefined-function>

<float> <program-error>

<floating-point-overflow> <serious-condition>

The classes <standard-class> and <built-in-class> are prede�ned metaclasses.

A user-de�ned class, de�ned by defclass, must be implemented as an instance of

<standard-class>. A prede�ned class can be implemented either as an instance of

<standard-class> (as if de�ned by defclass) or as an instance of <built-in-class> or as an

instance of <built-in-class>.

Figure 1 shows the required inheritance relationships among the classes de�ned by ISLISP. For

each pair of classes C1 and C2 in this �gure, if C1 is linked directly by an arrow to C2, C1 is a

direct superclass of C2 (and C2 is a direct subclass of C1). Additional relationships might exist,

subject to the following constraints:

1. It is implementation de�ned whether <standard-generic-function> is a subclass of the

class <standard-object>.

2. Except as described in Figure 1 and the above constraint on

<standard-generic-function>, no other subclass relationships exist among the classes

de�ned in this document. However, additional implementation-speci�c subclass

relationships may exist between implementation-speci�c classes and classes de�ned in this

document.

3. The class precedence list for <null> observes the partial order <null>, <symbol>, <list>,

<object>.

4. Users may de�ne additional classes using defclass.

A built-in class is one whose instances have restricted capabilities or special representations. The

defclass de�ning form must not be used to de�ne subclasses of a built-in class. An error shall

be signaled if create is called to create an instance of a built-in class.

A standard class is an instance of <standard-class>, and a built-in class is an instance of

<built-in-class>.

13

ISLISP Working Draft 20.3 PUBLIC DOMAIN

A standard class de�ned with no direct superclasses is guaranteed to be disjoint from all of the

classes in the �gure, except for the classes named <standard-object> and <object>.

The class <function> is the class of all functions. The class <standard-generic-function> is

the default class of all generic functions.

2.3 Standard Classes

2.3.1 Slots

An object that has <standard-class> as its metaclass has zero or more named slots. The slots

of an object are determined by the class of the object. Each slot can hold one object as its value.

The name of a slot is an identi�er.

When a slot does not have a value, the slot is said to be unbound. The consequences are

unde�ned if an attempt is made to retrieve the value of an unbound slot.

Storing and retrieving the value of a slot is done by generic functions de�ned by the defclass

de�ning form.

All slots are local; i.e., there are no shared slots accessible by several instances.

A class is said to de�ne a slot with a given name when the defclass de�ning form for that

class contains a slot speci�er with that name. De�ning a slot does not immediately create a slot;

it causes a slot to be created each time an instance of the class is created.

A slot is said to be accessible in an instance of a class if the slot is de�ned by the class of the

instance or is inherited from a superclass of that class. At most one slot of a given name can be

accessible in an instance. A detailed explanation of the inheritance of slots is given in the section

x7.1.3.

2.3.2 Creating Instances of Classes

The generic function create creates and returns a new instance of a class. ISLISP provides

several mechanisms for specifying how a new instance is to be initialized. For example, it is

possible to specify the initial values for slots in newly created instances by providing default

initial values. Further initialization activities can be performed by methods written for generic

functions that are part of the initialization protocol.

3 Scope and Extent

In describing ISLISP, the notions of scope and extent are useful. The �rst is a syntactic concept,

the latter is a semantic concept. Although syntactic constructs, especially identi�ers, are used to

refer to runtime entities (i.e., objects arising during execution), a single entity cannot have both

scope and extent. Scope is a feature of an identi�er, referring to that textual part of an ISLISP

text (see x1.3) within which this identi�er occurs with unique meaning. Extent refers to the

interval of execution time during which a certain object exists.

14

PUBLIC DOMAIN ISLISP Working Draft 20.3

A namespace is a mapping from identi�ers to meanings. In ISLISP there are six namespaces:

variable, dynamic variable, function, class, block, and tagbody tag. It is therefore possible for a

single identi�er to have any or all of these six meanings, depending on the context. For example,

an identi�er's meaning is determined by the function namespace when the identi�er appears in

the operator position of a function application form, whereas the same identi�er's meaning is

determined by the variable namespace if it appears in an argument position in the same form.

3.1 The Lexical Principle

ISLISP is designed following the principle of lexical visibility. This principle states that an

ISLISP text must be structured in properly nested lexical blocks of visibility. Within a block, all

de�ned identi�ers of that block and of all enclosing outer blocks are visible. Each identi�er in a

namespace has the meaning determined by the innermost block that de�nes it.

ISLISP also supports a form of dynamic binding. Dynamic bindings are established and

accessed by a separate mechanism (i.e., defdynamic, dynamic-let, and dynamic). The dynamic

value associated with such an identi�er is the one that was established by the most recently

executed active block that established it, where an active block is one that has been established

and not yet disestablished. Because a separate mechanism is used, the lexical meaning of and the

dynamic value associated with an identi�er are simultaneously accessible wherever both are

de�ned.

3.2 Scope of Identi�ers

The scope of an identi�er is that part of an ISLISP text where the meaning of the identi�er is

de�ned. It starts textually with the de�nition point|a point that is speci�ed individually for

each form that establishes an identi�er. Only identi�ers can have a scope.

For each namespace, if an identi�er has scope sa and an identical identi�er (in the same

namespace) has nested scope sb, then the scope sb of the inner identi�er and every scope

contained in it are not part of the scope sa. It is said that the inner scope shadows the outer

scope.

Each complete ISLISP text unit is processed in a scope called the toplevel scope.

In each namespace, nested binding forms shadow outer binding forms and de�ning forms.

3.3 Some Speci�c Scope Rules

The toplevel scope is the scope of identi�ers of required built-in functions, required built-in

macros, and constants.

Reserved identi�ers are not subject to the lexical principle, because they are not identi�ers.

They cannot be de�ned or bound. See x1.6.

15

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(let ((a1 f-a1)

...

(x f-x) ...

(z1 f-z1))

... ; now a1...x...z1 are applicable, their scope begins here

(let ((a2 f-a2) ; a1...x...z1 might be de�ned newly, but:

... ; the outer a1...x...z1 are still usable

(x f-x2) ; the inner a2...x...z2 are not yet usable

...

(z2 f-z2)) ; the scope of the outer x becomes shadowed

; the scope for the inner a2...x...z2 starts

... ; now outer a1, z1 and inner a2...x...z2 are applicable

) ; scopes of a2...x...z2 end here

... ; scope of outer x becomes unshadowed

) ; scopes of a1...x...z1 end here

Figure 2. Scope Example

3.4 Extent

Complementary to scope which is a syntactic concepts, extent is a semantic concept: It

describes the lifetime of entities.

Objects are created at some time during execution. In most cases, it is undetermined when an

object ends its existence: its lifetime begins when the object is created and ends when reference

to it is no longer possible (and the object is subject to garbage collection). In this case the

object is said to have inde�nite extent.

In other cases the processor creates entities that are associated with prepared text. The lifetime

of such objects begins at the activation point of a de�ning construct and ends at the end of

activation; in this case the object is said to have dynamic extent.

During execution, de�ning forms and the following binding forms create bindings at their

activation points:

block let* with-open-output-file

flet tagbody with-standard-input

for with-error-output with-standard-output

labels with-open-input-file

let with-open-io-file

The bindings established by de�ning forms may have inde�nite extent. Even in local binding

constructs, bindings might not vanish upon activation end of the prepared block|if one or more

function objects are created during execution of the prepared block that contain references to

those bindings, the bindings will have a lifetime equal to the longest lifetime of those function

objects.

Example:

(defun copy-cell (x) (cons (car x) (cdr x)))

16

PUBLIC DOMAIN ISLISP Working Draft 20.3

The scope of the identi�er x is the body alone|i.e., (cons (car x) (cdr x)). The

meaning of x is de�ned for the entire body. x, as identi�er, cannot have an extent.

The defun form for copy-cell is prepared for execution and thereby copy-cell

becomes a prepared function. During execution the prepared function copy-cell

might be activated. Activation in this case results in the creation of a binding

between the variable denoted by x and the object which is used as argument. The

binding of x is an entity whose extent lasts from the activation point to the activation

end of the function. (In general the extent of a binding can last beyond the activation

end, but this does not occur in this simple case.) We say that the binding of x is

established upon activation of the function and is disestablished at activation end.

4 Forms and Evaluation

4.1 Forms

Execution presupposes successful preparation for execution of an ISLISP text subject to the

evaluation model. Execution is an activation of a prepared text form that results in a value and

perhaps in some side e�ects.

An ISLISP text is a sequence of forms.

Throughout this document the value a form returns is described, but in general a form might not

return if one of its subforms executes a non-local exit (see x6.7.1). Therefore, it should be

understood that all such descriptions implicitly include the provision that if the form returns, a
particular value is returned.

The following are valid forms in ISLISP:

� Compound forms

{ Special forms

{ De�ning forms

{ Function application forms

{ Macro forms

� Identi�ers

� Literals

A form, when evaluated, returns an object as its value, though some forms may not return (e.g.,
return-from).

A compound form is written as (operator argument*). The operator must be a special operator,

or an identi�er, or a lambda expression. The identi�er names a function, or a generic function.

It is a violation if operator is a literal.

A toplevel form is a form that is either not lexically nested within another form or is lexically

nested only within one or more progn forms. Special forms and function application forms at

toplevel are called set-up forms. It is a violation if a de�ning form is not a toplevel form.

17

ISLISP Working Draft 20.3 PUBLIC DOMAIN

4.2 Function Application Forms

A function application form is a compound form whose operator is an identi�er (naming a

function) or whose operator is a lambda expression. All of the arguments are evaluated, from left

to right, and the function is called with (or \applied to") arguments that are, in the same order,

the objects resulting from these evaluations. This document describes a function application

form in the following format:

(function-name argument*) ! result-class function

This describes an ordinary function.

(generic-function-name argument*) ! result-class generic function

This describes a generic function.

(local-function-name argument*) ! result-class local function

This describes an ordinary function that is available only in a speci�ed lexical scope.

4.3 Special Forms

A special form is a form whose arguments are treated in a special way; for example, arguments

are not evaluated or are evaluated in a special order. It is implementation de�ned whether any

special form is implemented as a macro (see x4.5 and x8). Special forms are recognized because

they have a special operator in their operator position. The following are special operators:

and dynamic-let or while

assure flet progn with-error-output

block for quote with-handler

case function return-from with-open-input-file

case-using go setf with-open-io-file

catch if setq with-open-output-file

class labels tagbody with-standard-input

cond lambda the with-standard-output

convert let throw

dynamic let* unwind-protect

There might be additional, implementation-de�ned special operators.

This document describes the evaluation of special forms in the following format:

(special-operator argument*) ! result-class special operator

18

PUBLIC DOMAIN ISLISP Working Draft 20.3

4.4 De�ning Forms

A de�ning form is a toplevel special form (see x4.3) that establishes a binding between name
and an object which is the result of handling the arguments according to the semantics implied

by de�ning-form-name; it is a violation if a de�ning form is not a toplevel form. For each

namespace, de�ning forms can occur at most once for the same name and, in case of method

de�nitions for the same parameter pro�le. A de�ning form is a compound form whose operator

is a de�ning operator. These are the de�ning operators:

defclass defdynamic defglobal defmethod

defconstant defgeneric defmacro defun

This document describes de�ning forms in the following format:

(de�ning-form-name name argument*) ! <symbol> de�ning operator

4.5 Macro Forms

Macro forms are expanded during preparation for execution. It is implementation de�ned

whether any operator described by this document as a macro is implemented as a special

operator (see x4.3).

For information on how macros are processed, see x8.

4.6 The Evaluation Model

This section provides an operational model of the process of evaluation.

The process of evaluation has two steps: A valid ISLISP text is �rst prepared for execution, and

then the prepared text is executed. Both the process of preparing the text for execution and the

properties of a prepared text are implementation dependent, except that all macros have been

expanded in the prepared text (see x8). The process of execution which follows is described in

terms of fully macroexpanded forms.

A prepared form is executed as follows:

1. If the form is a literal, the result is the form itself.

2. If the form is an identi�er, the result is the object denoted by the identi�er in the variable

namespace of the current lexical environment. An error shall be signaled if no binding has

been established for the identi�er in the variable namespace of current lexical environment

(see x1.8.2) (error-id. unbound-variable).

3. If the form is a compound form, then one of the following cases must apply:

(a) If the operator is a special operator, then the form is a special form and its arguments
are evaluated according to the de�nition of the special operator. For example, if �rst

19

ISLISP Working Draft 20.3 PUBLIC DOMAIN

evaluates its condition expression and, depending on the result obtained, it then

evaluates the \then" form or the \else" form.

(b) If the operator names a de�ning form, then the �rst argument is an identi�er. The

remaining arguments are handled according to the speci�cation of the de�ning form

and the resulting object is used to establish a binding between the identi�er and that

object in the appropriate namespace.

(c) If the operator is a lambda-expression, then the arguments are evaluated. The order

of evaluation of the arguments is sequentially from left to right. Then the function

denoted by the lambda-expression is invoked with the evaluated arguments as actual

parameters. The result is the value returned by the function, if it returns.

Example:

((lambda (x) (+ x x)) 4)) 8

(d) Otherwise, the compound form is a function application form. The operator position

of the form is an identi�er; it will be evaluated in the function namespace to produce

a function to be called. An error shall be signaled if no binding has been established

for the identi�er in the function namespace of the current lexical environment (see

x1.8.2) (error-id. unde�ned-function). The arguments are evaluated in order from left

to right, yielding objects (sometimes called \actual arguments") to which the function

will be applied. Then the function is invoked with the evaluated arguments as actual

parameters. The result is the value returned by the function, if it returns.

4. Otherwise, an error shall be signaled (error-id. unde�ned-function).

See x1.8.2 for descriptions of error situations that might occur during execution of the above

cases.

4.7 Functions

A function can receive some objects as arguments upon activation. If a function returns, it

returns an object as its value. A function binding can be established in one of the following

ways:

� by using function de�ning forms; i.e., the defun, defgeneric, and defclass de�ning forms

� by using labels and flet special forms

(functionp obj) ! boolean function

Returns t if obj is a (normal or generic) function; otherwise, returns nil. obj may be any ISLISP

object.

Example:

(functionp (function car))) t

20

PUBLIC DOMAIN ISLISP Working Draft 20.3

Function bindings are entities established during execution of a prepared labels or flet forms

or by a function-de�ning form. A function binding is an association between an identi�er,

function-name, and a function object that is denoted by function-name|if in operator

position|or by (function function-name) elsewhere.

(function function-name) ! <function> special operator

#'function-name ! <function> syntax

This special form denotes a reference to the function named by the identi�er function-name.
This special form is used to refer to identi�ers de�ned by function-de�ning forms, labels, or

flet which are not in operator position.

(function function-name) can be written as #'function-name.

It returns the function object named by function-name.

An error shall be signaled if no binding has been established for the identi�er in the function

namespace of current lexical environment (see x1.8.2) (error-id. unde�ned-function). The
consequences are unde�ned if the function-name names a macro or special form.

Example:

(funcall (function -) 3)) -3

(apply #'- '(4 3))) 1

(lambda lambda-list form*) ! <function> special operator

Where:

lambda-list ::= (identi�er* [&rest identi�er]) j
(identi�er* [:rest identi�er])

and where no identi�er may appear more than once in lambda-list .

Execution of the lambda special form creates a function object.

The scope of the identi�ers of the lambda-list is the sequence of forms form*, collectively referred

to as the body .

When the prepared function is activated later (even if transported as object to some other

activation) with some arguments, the body of the function is evaluated as if it was at the same

textual position where the lambda special form is located, but in a context where the lambda

variables are bound in the variable namespace with the values of the corresponding arguments.

A &rest or :rest variable, if any, is bound to the list of the values of the remaining arguments.

An error shall be signaled if the number of arguments received is incompatible with the speci�ed

lambda-list (error-id. arity-error).

21

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Once the lambda variables have been bound, the body is executed. If the body is empty, nil is

returned otherwise the result of the evaluation of the last form of body is returned if the body

was not left by a non-local exit (see x6.7.1).

If the function receives a &rest or :rest parameter R, the list L1 to which that parameter is

bound has inde�nite extent. L1 is newly allocated unless the function was called with apply and

R corresponds to the �nal argument, L2, to that call to apply (or some subtail of L2), in which

case it is implementation de�ned whether L1 shares structure with L2.

Example:

((lambda (x y) (+ (* x x) (* y y))) 3 4)

) 25

((lambda (x y &rest z) z) 3 4 5 6)

) (5 6)

((lambda (x y :rest z) z) 3 4 5 6)

) (5 6)

(funcall (lambda (x y) (- y (* x y))) 7 3)

) -18

(labels ((function-name lambda-list form*)*) body-forms*) ! <object> special operator

(flet ((function-name lambda-list form*)*) body-forms*) ! <object> special operator

The flet and labels special forms allow the de�nition of new identi�ers in the function

namespace for function objects.

In a labels special form the scope of an identi�er function-name is the whole labels special

form (excluding nested scopes, if any); for the flet special form, the scope of an identi�er is

only the body-form*. Within these scopes, each function-name is bound to a function object

whose behavior is equivalent to (lambda lambda-list form*), where free identi�er references are

resolved as follows:

� For a labels form, such free references are resolved in the lexical environment that was

active immediately outside the labels form augmented by the function bindings for the

given funs (i.e., any reference to a function function-name refers to a binding created by

the labels).

� For a flet form, free identi�er references in the lambda-expression are resolved in the

lexical environment that was active immediately outside the flet form (i.e., any reference

to a function function-name are not visible).

During activation, the prepared labels or flet establishes function bindings and then evaluates

each body-form in the body sequentially; the value of the last one (or nil if there is none) is the

value returned by the function activation.

No function-name may appear more than once in the function bindings.

Example:

(labels ((evenp (n)

22

PUBLIC DOMAIN ISLISP Working Draft 20.3

(if (= n 0)

t

(oddp (- n 1))))

(oddp (n)

(if (= n 0)

nil

(evenp (- n 1)))))

(evenp 88))) t

(flet ((f (x) (+ x 3)))

(flet ((f (x) (+ x (f x))))

(f 7)))) 17

(apply function obj* list) ! <object> function

Applies function to the arguments, obj*, followed by the elements of list , if any. It returns the
value returned by function.

An error shall be signaled if function is not a function (error-id. domain-error). Each obj may

be any ISLISP object. An error shall be signaled if list is not a proper list (see x1.5) (error-id.
improper-argument-list).

Example:

(apply (if (< 1 2) (function max) (function min))

1 2 (list 3 4))) 4

(defun compose (f g)

(lambda (:rest args)

(funcall f (apply g args)))))) compose

(funcall (compose (function sqrt) (function *)) 12 75)

) 30

(funcall function obj*) ! <object> function

Activates the speci�ed function function and returns the value that the function returns. The

ith argument (2 � i) of funcall becomes the (i � 1)th argument of the function. funcall could

have been de�ned using apply as follows:

(defun funcall (function :rest arguments)

(apply function arguments))

An error shall be signaled if function is not a function (error-id. domain-error). Each argument
may be any ISLISP object.

23

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Example:

(let ((x '(1 2 3)))

(funcall (cond ((listp x) (function car))

(t (lambda (x) (cons x 1)))) x))

) 1

4.8 De�ning Operators

Although the names de�ned by de�ning forms can be used throughout the current toplevel scope,

the prepared toplevel forms in an ISLISP text unit are executed sequentially from left to right.

Two de�ning forms with the same identi�er in the same namespace are not allowed in one

toplevel scope.

(defconstant name form) ! <symbol> de�ning operator

This form is used to de�ne a named constant in the variable namespace of the current toplevel

scope. The scope of name is the entire current toplevel scope except the body form.

Although name is globally constant, a variable binding for name can be locally established by a

binding form.

The result of the evaluation of form is bound to the variable named by name. The binding and
the object created as the result of evaluating the second argument are immutable. The symbol

named name is returned.

Example:

(defconstant e 2.7182818284590451)) e

e) 2.7182818284590451

(defun f () e)) f

(f)) 2.7182818284590451

(defglobal name form) ! <symbol> de�ning operator

This form is used to de�ne an identi�er in the variable namespace of the current toplevel scope.

The scope of name is the entire current toplevel scope except the body form.

form is evaluated to compute an initializing value for the variable named name. Therefore,
defglobal is used only for de�ning variables and not for modifying them. The symbol named

name is returned.

A lexical variable binding for name can still be locally established by a binding form; in that

case, the local binding lexically shadows the outer binding of name de�ned by defglobal.

24

PUBLIC DOMAIN ISLISP Working Draft 20.3

Example:

(defglobal today 'wednesday)) today

today) wednesday

(defun what-is-today () today)) what-is-today

(what-is-today)) wednesday

(let ((what-is-today 'thursday)) (what-is-today))

) wednesday

(let ((today 'thursday)) (what-is-today))

) wednesday

(defdynamic name form) ! <symbol> de�ning operator

This form is used to de�ne a dynamic variable identi�er in the dynamic variable namespace. The

scope of name is the entire current toplevel scope except the body form.

The symbol named name is returned.

Example:

(defdynamic *color* 'red)) red

(dynamic *color*)) red

(defun what-color () (dynamic *color*))

) what-color

(what-color)) red

(dynamic-let ((*color* 'green)) (what-color))

) green

(defun function-name lambda-list form*) ! <symbol> de�ning operator

The defun-form de�nes function-name as an identi�er in the function namespace; function-name
is bound to a function object equivalent to (lambda lambda-list form*).

The scope of function-name is the whole current toplevel scope. Therefore, the de�nition of a

function admits recursion, occurrences of function-name within the form* refer to the function

being de�ned. The binding between function-name and the function object is immutable.

defun returns the function name which is the symbol named function-name. The free identi�ers
in the body (i.e., those which are not contained in the lambda list) follow the rules of lexical

scoping.

Example:

(defun caar (x) (car (car x)))) caar

25

ISLISP Working Draft 20.3 PUBLIC DOMAIN

5 Predicates

5.1 Boolean Values

The values t and nil are called booleans. t denotes true, and nil is the only value denoting

false. Predicates, also called boolean functions, are functions that return t when satis�ed

and nil otherwise.

Any object other than nil is treated as true (not just t). When objects are treated as true or

nil this way they are called quasi-booleans.

t is an identi�er naming the symbol t, and nil is an identi�er naming the symbol nil (which is

also the empty list). nil is the unique instance of the <null> class.

Like boolean functions, the and and or special forms return truth values; however, these truth

values are nil when the test is not satis�ed and a non-nil value otherwise. The result of and

and or are quasi-booleans.

t ! <symbol> named constant

nil ! <null> named constant

t is a named constant whose value is the symbol t itself. nil is a named constant whose value is

the symbol nil itself.

5.2 Class Predicates

The following functions are one-argument class membership predicates:

basic-array*-p floatp integerp stringp

basic-array-p functionp listp symbolp

basic-vector-p general-array*-p null

characterp general-vector-p numberp

consp generic-function-p streamp

In addition, the function instancep is a two-argument predicate that tests membership in an

arbitrary class.

5.3 Equality

(eq obj1 obj2) ! boolean function

(eql obj1 obj2) ! boolean function

eq and eql test whether obj1 and obj2 are same identical object. They return t if the objects are
the same; otherwise, they return nil. Two objects are the same if there is no operation that

could distinguish them (without modifying them), and if modifying one would modify the other

the same way.

26

PUBLIC DOMAIN ISLISP Working Draft 20.3

For eq, the consequences are unde�ned if either obj1 or obj2 is a number or a character. For eql

the meaning for numbers and characters is de�ned as follows:

� If obj1 and obj2 are numbers, eql tests whether they are direct instances of the same

classes and have the same value.

If an implementation supports positive and negative zeros as distinct values, then (eql

0.0 -0.0) returns nil. When the syntax -0.0 is read and it is interpreted as the value

0.0 then (eql 0.0 -0.0) returns t.

� If obj1 and obj2 are characters, eql tests whether they are the same character (see char=).

Example:

(eql () ())) t

(eq () ())) t

(eql '() '())) t

(eq '() '())) t

(eql 'a 'a)) t

(eq 'a 'a)) t

(eql 'a 'A)) t

(eq 'a 'A)) t

(eql 'a 'b)) nil

(eq 'a 'b)) nil

(eql 'f 'nil)) nil

(eq 'f 'nil)) nil

(eql 2 2)) t

(eq 2 2)) nil or t (implementation-de�ned)
(eql 2 2.0)) nil

(eq 2 2.0)) nil

(eql 100000000 100000000)) t

(eq 100000000 100000000)) nil or t (implementation-de�ned)
(eql 10.00000 10.0)) t

(eq 10.00000 10.0)) nil or t (implementation-de�ned)
(eql (cons 1 2) (cons 1 2))) nil

(eq (cons 1 2) (cons 1 2))) nil

(let ((x '(a))) (eql x x))) t

(let ((x '(a))) (eq x x))) t

(eql '(a) '(a))) nil or t (implementation-de�ned)
(eq '(a) '(a))) nil or t (implementation-de�ned)
(let ((x '(b))

(y '(a b)))

(eql x (cdr y)))) nil or t (implementation-de�ned)
(let ((x '(b))

(y '(a b)))

(eq x (cdr y)))) nil or t (implementation-de�ned)
(eql '(b) (cdr '(a b)))) nil or t (implementation-de�ned)
(eq '(b) (cdr '(a b)))) nil or t (implementation-de�ned)
(let ((p (lambda (x) x)))

(eql p p))) t

(let ((p (lambda (x) x)))

(eq p p))) t

(let ((x "a")) (eql x x))) t

27

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(let ((x "a")) (eq x x))) t

(eql "a" "a")) nil or t (implementation-de�ned)
(eq "a" "a")) nil or t (implementation-de�ned)
(let ((x "")) (eql x x))) t

(let ((x "")) (eq x x))) t

(eql "" "")) nil or t (implementation-de�ned)
(eq "" "")) nil or t (implementation-de�ned)
(eql #na #nA)) nil

(eq #na #nA)) nil

(eql #na #na)) t

(eq #na #na)) nil or t (implementation-de�ned)
(eql #nspace #nSpace)) t

(eq #nspace #nSpace)) nil or t (implementation-de�ned)
(eql #nspace #nspace)) t

(eq #nspace #nspace)) nil or t (implementation-de�ned)

(equal obj1 obj2) ! boolean function

This function tests whether obj1 and obj2 are isomorphic|i.e., whether obj1 and obj2 denote the
same structure with equivalent values. equal returns t if the test was satis�ed, and nil if not.

Speci�cally:

If obj1 and obj2 are instances of the same classes, equal returns t if they are eql. Otherwise (if

they are direct instances of the same classes but not eql), the result is t if one of the following

cases applies:

(a) lists: either obj1 and obj2 are both the empty list (i.e., nil), or

(and (equal (car obj1) (car obj2))
(equal (cdr obj1) (cdr obj2))) holds;

(b) basic arrays:

(equal (array-dimensions obj1)

(array-dimensions obj2))

holds and for every valid reference (aref obj1 ind1 : : : indn)

(equal (aref obj1 ind1 : : : indn)
(aref obj2 ind1 : : : indn)) is satis�ed.

Otherwise the value is nil.

obj1 and obj2 may be any ISLISP objects.

Example:

(equal 'a 'a)) t

(equal 2 2)) t

(equal 2 2.0)) nil

28

PUBLIC DOMAIN ISLISP Working Draft 20.3

(equal '(a) '(a))) t

(equal '(a (b) c)

'(a (b) c))) t

(equal (cons 1 2) (cons 1 2))) t

(equal '(a) (list 'a))) t

(equal "abc" "abc")) t

(equal (vector 'a) (vector 'a))) t

(equal #(a b) #(a b))) t

(equal #(a b) #(a c))) nil

(equal "a" "A")) nil

5.4 Logical Connectives

(not obj) ! boolean function

This predicate is the logical \not" (or \:"). It returns t if obj is nil and nil otherwise. obj
may be any ISLISP object.

Example:

(not t)) nil

(not '())) t

(not 'nil)) t

(not nil)) t

(not 3)) nil

(not (list))) t

(not (list 3))) nil

(and form*) ! <object> special operator

and is the sequential logical \and" (or \^"). forms are evaluated from left to right until either

one of them evaluates to nil or else none are left. If one of them evaluates to nil, then nil is

returned from the and; otherwise, the value of the last evaluated form is returned. The form and

is equivalent to the following:

(and) � 't

(and form) � form
(and form1 form2 : : : formn) � (if form1 (and form2 : : : formn) 'nil)2

Example:

2For the de�nition of if, see x6.4 below.

29

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(and (= 2 2) (> 2 1))) t

(and (= 2 2) (< 2 1))) nil

(and (eql 'a 'a) (not (> 1 2)))) t

(let ((x 'a)) (and x (setq x 'b)))) b

(let ((x nil)) (and x (setq x 'b)))) nil

(let ((time 10))

(if (and (< time 24) (> time 12))

(- time 12) time))) 10

(let ((time 18))

(if (and (< time 24) (> time 12))

(- time 12) time))) 6

(or form*) ! <object> special operator

or is the sequential logical \or" (or _"). forms are evaluated from left to right until either one

of them evaluates to a non-nil value or else none are left. If one of them evaluates to a non-nil

value, then this non-nil value is returned, otherwise nil is returned. The form or is equivalent

to the following:

(or) � 'nil

(or form) � form
(or form1 form2 : : : formn) � ((lambda (var)

(if var var (or form2 : : : formn))) form1)

where var does not occur in form2 : : : formn

Example:

(or (= 2 2) (> 2 1))) t

(or (= 2 2) (< 2 1))) t

(let ((x 'a)) (or x (setq x 'b)))) a

(let ((x nil)) (or x (setq x 'b)))) b

6 Control Structure

6.1 Constants

constant ! <object> syntax

There are three kinds of constants: literals, quoted expressions, and named constants. Quoted

expressions are described below.

The consequences are unde�ned if an attempt is made to alter the value of a constant.

30

PUBLIC DOMAIN ISLISP Working Draft 20.3

The result of evaluating the literal constant constant is constant itself. Instances of the following
classes are literal constants: <basic-array>, <character>, and <number>

Example:

#2A((a b c) (d e f))) #2A((a b c) (d e f))

#na) #na
145932) 145932

"abc") "abc"

#(a b c)) #(a b c)

(quote obj) ! <object> special operator

'obj ! <object> syntax

A quoted expression denotes a reference to an object. This notation is used to include any object

in an ISLISP text.

The character ' (apostrophe or single quote) is syntax for quotation. That is, (quote a) � 'a.

The result of the evaluation of the quote special form is obj .

Example:

(quote a)) a

(quote #(a b c))) #(a b c)

(quote (+ 1 2))) (+ 1 2)

'()) nil

'a) a

'#(a b c)) #(a b c)

'(car l)) (car l)

'(+ 1 2)) (+ 1 2)

'(quote a)) (quote a)

''a) (quote a)

(car ''a)) quote

The consequences are unde�ned if an attempt is made to alter the value of a quoted expression.

6.2 Variables

Variable bindings, or variables, are entities established during execution of the prepared

variable-binding forms or by the activation of functions.

A variable is an association between an identi�er and an ISLISP object and is denoted by that

identi�er. The association can be altered (by assignment) using the setf special form or setq

special form.

The following are variable binding forms:

31

ISLISP Working Draft 20.3 PUBLIC DOMAIN

defglobal let for let*

var ! <object> syntax

The value of var is the object associated with var in its variable binding.

Example:

(defglobal x 0)) x

x) 0

(let ((x 1)) x)) 1

x) 0

(setq var form) ! <object> special operator

This form represents an assignment to the variable denoted by the identi�er. In consequence, the

identi�er may designate a di�erent object than before, the value of form.

The result of the evaluation of form is returned. This result is used to modify the variable

binding denoted by the identi�er var (if it is mutable). setq can be used only for modifying

bindings, and not for establishing a variable. The setq special form must be contained in the

scope of var , established by defglobal, let, let*, for, or a lambda expression.

Example:

(defglobal x 2)) x

(+ x 1)) 3

(setq x 4)) 4

(+ x 1)) 5

(let ((x 1)) (setq x 2) x)) 2

(+ x 1)) 5

(setf place form) ! <object> special operator

This macro is used for generalized assignment.

setf takes a place and stores in this place the result of the evaluation of the form form. The

place form is not evaluated as a whole entity, but subforms of place are evaluated sequentially

from left to right to determine a place to be assigned a value. When place is denoted by an

identi�er, setf behaves exactly as setq. The returned value is the result of the evaluation of

form. The valid places for the setf special form are as follows:

32

PUBLIC DOMAIN ISLISP Working Draft 20.3

variables var
dynamic bindings (dynamic var)
the components of a basic-array (aref basic-array z1 : : : zn)
the components of a general array (garef general-array z1 : : :zn)
the components of a list (elt list z)
the components of a vector (elt basic-vector z)
the left component of a cons (car cons)
the right component of a cons (cdr cons)
a property of a symbol (property symbol property)
a slot of an instance of a class (accessor-name instance)

A place can also be a macro form that expands (during preparation for execution) into a place or

a function application form with operator op for which setf is de�ned or for which a generic

function named (setf op) has been de�ned. In these last two cases, that function will receive

as arguments the new value to be assigned followed by the objects that resulted from evaluating

the arguments of the place form.

Example:

(setf (car x) 2)) 2

In the cons x, the car now is 2.

(defmacro first (spot)

�(car ,spot))) first

(setf (first x) 2)) 2

In the cons x, the car now is 2.

(let ((var form)*) body-form*) ! <object> special operator

The let special form is used to de�ne a scope for a group of identi�ers for a sequence of forms

body-form* (collectively referred to as the body). The list of pairs (var form)* is called the let

variable list. The scope of the identi�er var is the body .

The forms form are evaluated sequentially from left to right; then each variable denoted by the

identi�er var is initialized to the corresponding value. Using these bindings along with the

already existing bindings of visible identi�ers the forms are evaluated. The returned value of let

is the result of the evaluation of the last body-form of its body (or nil if there is none).

No var may appear more than once in let variable list.

Note: Although this form is a special form, one can think of it as a macro whose rewriting rules are as

follows:

(let () body-form*) � (progn body-form*)3

(let ((var1 form1) � ((lambda (var1 var2 : : : varn)
(var2 form2) body-form*

...) form1 form2 : : : formn)
4

(varn formn)

body-form*)

33

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Example:

(let ((x 2) (y 3))

(* x y))) 6

(let ((x 2) (y 3))

(let ((x 7)

(z (+ x y)))

(* z x)))) 35

(let ((x 1) (y 2))

(let ((x y) (y x))

(list x y)))) (2 1)

(let* ((var form)*) body-form*) ! <object> special operator

The let* form is used to de�ne a scope for a group of identi�ers for a sequence of forms

body-form* (collectively referred to as the body). The �rst subform (the let* variable list) is a

list of pairs (var form). The scope of an identi�er var is the body excluding nested regions of

var , if any, along with all form forms following the pair (var form) in the let* variable list.

For each pair (var form) the following is done: form is evaluated in the context of the bindings

in e�ect at that point in the evaluation. The result of the evaluation is bound to its associated

variable named by the identi�er var . These de�nitions enlarge the set of current valid identi�ers

perhaps shadowing previous de�nitions (in case some var was de�ned outside), and in this

enlarged or modi�ed environment the forms are executed. The returned value of let* is the

result of the evaluation of the last form of its body (or nil if there is none).

Note: Although this form is a special form, one can think of it as a macro whose rewriting rules are as

follows:

(let* () body-form*) � (progn body-form*)

(let* ((var1 form1) � (let ((var1 form1))

(var2 form2) (let ((var2 form2))

... ...

(varn formn)) (let ((varn formn))

body-form*) body-form*)...))

Example:

(let ((x 2) (y 3))

(let* ((x 7)

(z (+ x y)))

(* z x)))) 70

3For the de�nition of progn see x6.5 below.
4For the de�nition of lambda see 5.6.d.

34

PUBLIC DOMAIN ISLISP Working Draft 20.3

(let ((x 1) (y 2))

(let* ((x y) (y x))

(list x y)))) (2 2)

6.3 Dynamic Variables

A dynamic variable is an association between an identi�er var and an ISLISP object in the

dynamic variable namespace. Dynamic variables implement a form of dynamic binding.

Dynamic variables are de�ned globally by defdynamic and are established during the execution

of a prepared dynamic-let.

Dynamic variable bindings de�ned by defdynamic persist inde�nitely whereas those established

by dynamic-let are disestablished upon end of execution of this special form.

The value of a dynamic variable can be accessed by (dynamic var).

(dynamic var) ! <object> special operator

This special form denotes a reference to the identi�er denoting a dynamic variable. This special

form is not allowed in the scope of a de�nition of var which is not done by defdynamic or

dynamic-let.

During activation, the current dynamic binding of the variable var is returned that was

established most recently and is still in e�ect. An error shall be signaled if such a binding does

not exist (error-id. unbound-variable).

(setf (dynamic var) form) ! <object> special form

This special form denotes an assignment to a dynamic variable. This form can appear anywhere

that (dynamic var) can appear.

form is evaluated and the result of the evaluation is used to change the dynamic binding of var .
An error shall be signaled if var has no dynamic value (error-id. unbound-variable). setf of

dynamic can be used only for modifying bindings, and not for establishing them.

(dynamic-let ((var form)*) body-form*) ! <object> special operator

The dynamic-let special form is used to establish dynamic variable bindings. The �rst subform

(the dynamic-let variable list) is a list of pairs (var form). The scope of an identi�er var
de�ned by dynamic-let is the current toplevel scope. The extent of the bindings of each var is

the extent of the body of the dynamic-let. The dynamic-let special form establishes dynamic

variables for all vars.

References to a dynamic variable named by var must be made through the dynamic special form.

35

ISLISP Working Draft 20.3 PUBLIC DOMAIN

All the initializing forms are evaluated sequentially from left to right, and then the values are

associated with the corresponding vars. Using these additional dynamic bindings and the already

existing bindings of visible identi�ers, the forms body-form* are evaluated in sequential order.

The returned value of dynamic-let is that of the last body-form of the body (or nil if there is

none). The bindings are undone when control leaves the prepared dynamic-let special form.

Example:

(defun foo (x)

(dynamic-let ((y x))

(bar 1)))) foo

(defun bar (x)

(+ x (dynamic y)))) bar

(foo 2)) 3

6.4 Conditional Expressions

(if test-form then-form [else-form]) ! <object> special operator

The test-form is evaluated. If its result is anything non-nil, the then-form is evaluated and its

value is returned; otherwise (if the test-form returned nil), the else-form is evaluated and its

value is returned.

If no else-form is provided, it defaults to nil.

Example:

(if (> 3 2) 'yes 'no)) yes

(if (> 2 3) 'yes 'no)) no

(if (> 2 3) 'yes)) nil

(if (> 3 2) (- 3 2) (+ 3 2))) 1

(let ((x 7))

(if (< x 0) x (- x)))) -7

(cond (test form*)*) ! <object> special operator

Executing the prepared cond, the clauses (test form*) are scanned sequentially and in each case

the test is evaluated; when a test delivers a non-nil value the scanning process stops and all

forms associated with the corresponding clause are sequentially evaluated and the value of the

last one is returned. If no test is true, then nil is returned. If no form exists for the successful

test then the value of this test is returned.

36

PUBLIC DOMAIN ISLISP Working Draft 20.3

cond obeys the following equivalences:

(cond) � nil

(cond (test1) � (or test1
(test2 form

�

2
) (cond (test2 form�

2
)

...) ...))

(cond (test1 form
+

1
) � (if test1

(test2 form
�

2) (progn form+

1
)

...) (cond (test2 form�

2
)

...))

Example:

(cond ((> 3 2) 'greater)

((< 3 2) 'less))) greater

(cond ((> 3 3) 'greater)

((< 3 3) 'less))) nil

(cond ((> 3 3) 'greater)

((< 3 3) 'less)

(t 'equal))) equal

(case keyform ((key*) form*)* [(t form*)]) ! <object> special operator

(case-using predform keyform ((key*) form*)* [(t form*)])

! <object> special operator

The case and case-using special forms, called case forms, provide a mechanism to execute a

matching clause from a series of clauses based on the value of a dispatching form keyform.

The clause to be executed is identi�ed by a set of keys. A key can be any object. If the keylist of

the last clause is t the associated clause is executed if no key matches the keyform.

keyform is a form to be computed at the beginning of execution of the case form. If the result of

evaluating keyform is equivalent to a key , then the forms, if any, in the corresponding clause are

evaluated sequentially and the value of the last one is returned as value of the whole case form.

case determines match equivalence by using eql; case-using match determines equivalence by

using the result of evaluating predform. predform must be a boolean or quasi-boolean function

that accepts two arguments, the value returned by keyform and key . If no form exists for a

matching key , the case form evaluates to nil. If the value of keyform is di�erent from every key ,
and there is a default clause, its forms, if any, are evaluated sequentially, and the value of the

last one is the result of the case form.

The same key (as determined by the match predicate) may occur only once in a case form.

Example:

(case (* 2 3)

((2 3 5 7) 'prime)

37

ISLISP Working Draft 20.3 PUBLIC DOMAIN

((4 6 8 9) 'composite))) composite

(case (car '(c d))

((a) 'a)

((b) 'b))) nil

(case (car '(c d))

((a e i o u) 'vowel)

((y) 'semivowel)

(t 'consonant))) consonant

(let ((char #nu))
(case char

((#na #ne #no #nu #ni) 'vowels)

(t 'consonants)))) vowels

(case-using #'= (+ 1.0 1.0)

((1) 'one)

((2) 'two)

(t 'more))) two

(case-using #'string= "bar"

(("foo") 1)

(("bar") 2))) 2

6.5 Sequencing Forms

(progn form*) ! <object> special operator

This special form allows a series of forms to be evaluated, where normally only one could be used.

The result of evaluation of the last form of form* is returned. All the forms are evaluated from

left to right. The values of all the forms but the last are discarded, so they are executed only for

their side e�ects. progn without forms returns nil.

Example:

(defglobal x 0)) x

(progn

(setq x 5)

(+ x 1))) 6

(progn

(format (standard-output) "4 plus 1 equals ")

(format (standard-output) "~D" (+ 4 1)))

) nil

38

PUBLIC DOMAIN ISLISP Working Draft 20.3

prints 4 plus 1 equals 5

6.6 Iteration

(while test-form body-form*) ! <null> special operator

Iterates while the test-form returns a true value. Speci�cally:

1. test-form is evaluated, producing a value Vt.

2. If Vt is nil, then the while form immediately returns nil.

3. Otherwise, if Vt is non-nil, the forms body-form* are evaluated sequentially (from left to

right).

4. Upon successful completion of the body-forms*, the while form begins again with step 1.

Example:

(let ((x '()) (i 5))

(while (> i 0) (setq x (cons i x)) (setq i (- i 1)))

x)) (1 2 3 4 5)

(for (iteration-spec*) (end-test result*) form*) ! <object> special operator

Where:

iteration-spec ::= (var init [step])

for repeatedly executes a sequence of forms form*, called its body . It speci�es a set of identi�ers
naming variables that will be local to the for form, their initialization, and their update for each

iteration. When a termination condition is met, the iteration exits with a speci�ed result value.

The scope of an identi�er var is the body , the steps, the end-test , and the result*. A step might

be omitted, in which case the e�ect is the same as if (var init var) had been written instead of

(var init). It is a violation if more than one iteration-spec names the same var in the same for

form.

The for macro is executed as follows: The init forms are evaluated sequentially from left to

right. Then each value is used as the initial value of the variable denoted by the corresponding

identi�er var , and the iteration phase begins.

Each iteration begins by evaluating end-test . If the result is nil, the forms in the body are

evaluated sequentially (for side e�ects). Afterwards, the step-forms are evaluated sequentially

39

ISLISP Working Draft 20.3 PUBLIC DOMAIN

order from left to right. Then their values are assigned to the corresponding variables and the

next iteration begins. If end-test returns a non-nil value, then the result* are evaluated
sequentially and the value of the last one is returned as value of the whole for macro. If no

result is present, then the value of the for macro is nil.

Example:

(for ((vec (vector 0 0 0 0 0))

(i 0 (+ i 1)))

((= i 5) vec)

(setf (elt vec i) i))) #(0 1 2 3 4)

(let ((x '(1 3 5 7 9)))

(for ((x x (cdr x))

(sum 0 (+ sum (car x))))

((null x) sum)))) 25

6.7 Non-Local Exits

6.7.1 Establishing and Invoking Non-Local Exits

ISLISP de�nes three ways in which to perform non-local exits:

Destination Kind Established by Invoked by Operation Performed

block tag block return-from lexical exit

tagbody tag tagbody go lexical transfer of control

catch tag catch throw dynamic exit

A non-local exit, is an operation that forces transfer of control and possibly data from an

invoking special form to a previously established point in a program, called the destination of

the exit.

A lexical exit is a non-local exit from a return-from form to a block form which contains it

both lexically and dynamically, forcing the block to return an object speci�ed in the

return-from form.

A dynamic exit is a non-local exit from a throw form to a catch form which contains it

dynamically (but not necessarily lexically), forcing the catch to return an object speci�ed in the

throw form.

A lexical transfer of control is a non-local exit from a go form to a tagged point in a tagbody

form which contains it both lexically and dynamically.

When a non-local exit is initiated, any potential destination that was established more recently

than the destination to which control is being transferred is immediately considered invalid.

(block name form*) ! <object> special operator

(return-from name result-form) transfers control and data special operator

40

PUBLIC DOMAIN ISLISP Working Draft 20.3

The block special form executes each form sequentially from left to right. If the last form exits

normally, whatever it returns is returned by the block form.

The name in a block form is not evaluated; it must be an identi�er. The scope of name is the

body form*|only a return-from textually contained in some form can exit the block. The

extent of name is dynamic.

If a return-from is executed, the result-form is evaluated. If this evaluation returns normally,

the value it returns is immediately returned from the innermost lexically enclosing block form

with the same name.

return-from is used to return from a block. name is not evaluated and must be an identi�er. A

block special form must lexically enclose the occurrence of return-from; the value produced by

result-form is immediately returned from the block. The return-from form never returns and

does not have a value.

An error shall be signaled if an attempt is made to exit a block after it has been exited

(error-id. control-error); It is a violation if name is not an identi�er. It is a violation if a block

with a corresponding name does not exist. See x6.7.2 for other errors.

Example:

(block x

(+ 10 (return-from x 6) 22)) ;;; Bad programming style

) 6

(defun f1 ()

(block b

(let ((f (lambda () (return-from b 'exit))))

... ; big computation

(f2 f))))) f1

(defun f2 (g)

... ; big computation

(funcall g))) f2

(f1)) exit

(block sum-block

(for ((x '(1 a 2 3) (cdr x))

(sum 0 (+ sum (car x))))

((null x) sum)

(cond ((not (numberp (car x))) (return-from sum-block 0)))))

) 0

(defun bar (x y)

(let ((foo #'car))

(let ((result

(block bl

(setq foo (lambda () (return-from bl 'first-exit)))

(if x (return-from bl 'second-exit) 'third-exit))))

(if y (funcall foo) nil)

result)))) bar

41

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(bar t nil)) second-exit

(bar nil nil)) third-exit

(bar nil t) an error shall be signaled
(bar t t) an error shall be signaled

(catch tag-form form*) ! <object> special operator

(throw tag-form result-form) transfers control and data special operator

The special forms catch and throw provide a facility for programming of structured non-local

dynamic exits. A catch form and a throw form are said to correspond if the tag-form of the

catch and the tag-form of the throw evaluate to the same object, a catch tag. A catch tag may

be any object other than a number or a character.

The catch special form �rst evaluates the tag-form to produce a catch tag, and then executes

each form sequentially from left to right. If execution of the forms �nishes normally, whatever is

returned by the last form is returned by the catch form.

Prior to execution of the forms of a catch form C0, an association between the catch tag T0 and
the executing form C0 is dynamically established, upon exit from C0, the association is

disestablished. If there was an outer association for the same catch tag T0, it is hidden during

the execution of C0's forms; only the most recently established (i.e., innermost) association for

T0 is ever visible.

If a throw special form is executed, it evaluates the tag-form producing a catch tag T1, and then

evaluates the result-form producing a result R1. If there is a corresponding association between

T1 and some catch form Ci that is executing, Ri is immediately returned as the value of Ci.

The throw form can be anywhere in the entire current toplevel scope; it need not be lexically

contained within Ci.

A catch tag may be any object that is neither a number nor a character; the comparison of catch
tags uses either eq.

An error shall be signaled if there is no outstanding catcher for a T1 (error-id. control-error).
See x6.7.2 for other errors.

Example:

(defun foo (x)

(catch 'block-sum (bar x)))) foo

(defun bar (x)

(for ((l x (cdr l))

(sum 0 (+ sum (car l))))

((null l) sum)

(cond ((not (numberp (car l))) (throw 'block-sum 0)))))

) bar

(foo '(1 2 3 4))) 10

(foo '(1 2 a 4))) 0

42

PUBLIC DOMAIN ISLISP Working Draft 20.3

(tagbody ftagbody-tag j formg*) ! <object> special operator

(go tagbody-tag) transfers control special operator

tagbody executes the forms sequentially from left to right, discarding their values. If the

execution of the last form completes normally, nil is returned by the tagbody special form.

The series of tagbody-tags and forms is collectively referred to as the body of a tagbody form.

An identi�er tagbody-tag that appears at toplevel of the body denotes a tagbody tag that can

be used with go to transfer control to that point in the body. Any compound form that appears

is taken as a form. Literals are not permitted at the toplevel of a tagbody. No tagbody-tag may

appear more than once in the tags in the body

The namespace used for tagbody tags is distinct from that used for block tags.

At any point lexically contained in the tagbody a form (go tagi) can be used to transfer control

to a tag tagi that appears among the tagbody-tags, except where a tagi is shadowed according to

the lexical principle (see x3.1).

A tagbody-tag established by tagbody has lexical scope, but the point in the program to which it

refers has dynamic extent. Once tagbody has been exited, it is no longer valid to use go to

transfer to any tag in its body.

The determination of which elements of the body are tagbody-tags and which are forms is made

prior to any macro expansion of that element. If form is a macro form and its macro expansion

is a symbol or literal, that atom is treated as a form, not as a tagbody-tag .

It is a violation if a tagbody tag is other than an identi�er. See x6.7.2 for other errors.

Note: As a stylistic matter, programmers are not encouraged to use tagbody and go in everyday

programming. The primary uses for which these forms are intended are for implementing other control

abstractions (using macros), and for the occassional real-world situation that parallels the unstructured

imperative transfer of control that these facilities provide (such as a �nite state machine).

Example:

(defmacro with-retry (:rest forms)

(let ((tag (gensym)))

�(block ,tag

(tagbody

,tag

(return-from ,tag

(flet ((retry () (go ,tag)))

,@forms))))))

) with-retry

(let ((i -5))

(with-retry

;; if-error is a hypothetical error correction function

;; not supplied by ISLISP.

(if-error (sqrt (setq i (+ i 4)))

(retry))))

) 1.7320508075688772

43

ISLISP Working Draft 20.3 PUBLIC DOMAIN

6.7.2 Assuring Data Consistency during Non-Local Exits

(unwind-protect form cleanup-form*) ! <object> special operator

unwind-protect �rst evaluates form. Evaluation of the cleanup-forms always occurs, regardless
of whether the exit is normal or non-local.

If the form exits normally yielding a value R, then if all of the cleanup-forms exit normally the

value R is returned by the unwind-protect form.

If a non-local exit from form occurs, then the cleanup-forms are executed as part of that exit,

and then if all of the cleanup-forms exit normally the original non-local exit continues.

The cleanup-forms are evaluated from left to right, discarding the resulting values. If execution

of the cleanup-forms �nishes normally, exit from the unwind-protect form proceeds as

described above. It is permissible for a cleanup-form to contain a non-local exit from the

unwind-protect form, subject to the following constraint:

An error shall be signaled if during execution of the cleanup-forms of an unwind-protect form,

a non-local exit is executed to a destination which has been marked as invalid due to some other

non-local exit that is already in progress (see x6.7.1) (error-id. control-error).

Note: Because ISLISP does not specify an interactive debugger, it is unspeci�ed whether or how error

recovery can occur interactively if programmatic handling fails. The intent is that if the ISLISP

processor does not terminate abnormally, normal mechanisms for non-local exit (return-from, throw, or

go) would be used as necessary and would respect these cleanup-forms.

Example:

(defun foo (x)

(catch 'duplicates

(unwind-protect (bar x)

(for ((l x (cdr l)))

((null l) 'unused)

(remove-property (car l) 'label)))))

) foo

(defun bar (l)

(cond ((and (symbolp l) (property l 'label))

(throw 'duplicates 'found))

((symbolp l) (setf (property l 'label) t))

((bar (car l)) (bar (cdr l)))

(t nil)))

) bar

(foo '(a b c))) t

(property 'a 'label)) nil

44

PUBLIC DOMAIN ISLISP Working Draft 20.3

(foo '(a b a c))) found

(property 'a 'label)) nil

(defun test ()

(catch 'outer (test2)))) test

(defun test2 ()

(block inner

(test3 (lambda ()

(return-from inner 7)))))

) test2

(defun test3 (fun)

(unwind-protect (test4) (funcall fun)))

) test3

(defun test4 ()

(throw 'outer 6))) test4

(test)) an error shall be signaled

In the test example, the throw executed in test4 has as destination the catcher established in

test. The unwind-protect in test3 intercepts the transfer of control and attempts to execute a

return-from from the block in test2. Because this block is established within the dynamic

extent of the destination catcher, an error is signaled.

7 Objects

7.1 De�ning Classes

The defclass de�ning form is used to de�ne a new named class.

The de�nition of a class includes the following:

� The name of the new class.

� The list of the direct superclasses of the new class.

� A set of slot speci�ers. Each slot speci�er includes the name of the slot and zero or more

slot options. A slot option pertains only to a single slot. A class de�nition must not

contain two slot speci�ers with the same name.

� A set of class options. Each class option pertains to the class as a whole.

The slot options and class options of the defclass de�ning form provide mechanisms for the

following:

� Supplying a default initial value form for a given slot.

45

ISLISP Working Draft 20.3 PUBLIC DOMAIN

� Requesting that methods for generic functions be automatically generated for retrieving or

storing slot values and inquiring whether a value is bound to the slot.

� Indicating that the metaclass of that class is to be other than the default.

(defclass class-name (sc-name*) (slot-spec*) class-opt*) ! <symbol> de�ning operator

Where:

class-name ::= identi�er
sc-name ::= identi�er
slot-spec ::= slot-name j (slot-name slot-opt*)
slot-name ::= identi�er
slot-opt ::= :reader reader-function-name j

:writer writer-function-name j
:accessor reader-function-name j
:boundp boundp-function-name j
:initform form j
:initarg initarg-name

initarg-name ::= identi�er
reader-function-name ::= identi�er
writer-function-name ::= identi�er
class-opt ::= (:metaclass class-name) j

(:abstractp abstract-ag)
abstract-ag ::= t j nil

The defclass de�ning form returns the symbol named class-name as its result.

The class-name argument is an identi�er which becomes the name of the new class. The de�ning

point of the class-name is the end of the defclass de�ning form.

Each superclass name argument sc-name is an identi�er that speci�es a direct superclass of the

new class. The new class will inherit slots and their :reader or :writer or :accessor methods

from each of its superclasses. See x7.1.3 for a de�nition of how slots are inherited, and x7.2.3 for
a de�nition of how methods are inherited. No sc-name may appear more than once in super

class names. It is a violation if the superclasses of any two direct superclasses sc-name have

superclasses other than <standard-object> and <object> in common unless a metaclass other

than <standard-class> is speci�ed.

Each slot-spec argument is the name of the slot or a list consisting of the slot name followed by

zero or more slot options. The slot-name argument is an identi�er that is syntactically valid for

use as an ISLISP variable name. No slot names may appear more than once in slot-spec

The following slot options are available:

� The :reader slot option speci�es that an unquali�ed method with the parameter pro�le

((x class-name)) is to be de�ned on the generic function named reader-function-name to

retrieve the value of the given slot. The :reader slot option may be speci�ed more than

once for a given slot.

46

PUBLIC DOMAIN ISLISP Working Draft 20.3

� The :writer slot option speci�es that an unquali�ed method with the parameter pro�le

((y <object>) (x class-name)) is to be de�ned on the generic function named

writer-function-name to store the value into the slot. The writer-function-name argument

is an identi�er. The :writer slot option may be speci�ed more than once for a given slot.

� The :accessor slot option speci�es that an unquali�ed method is to be de�ned on the

generic function named reader-function-name to retrieve the value of the given slot.

Furthermore, there is a generic function such that (setf (reader-function-name x) y) is

equivalent to calling this generic function with �rst argument y and second argument x.

This generic function is extended by a method with the parameter pro�le ((y <object>)

(x class-name)). The reader-function-name argument is an identi�er. The :accessor

slot option may be speci�ed more than once for a given slot.

� The :boundp slot option speci�es that an unquali�ed method with the parameter pro�le

((x class-name)) is to be de�ned on the generic function named boundp-function-name to

test whether the given slot has been given a value. The :boundp slot option may be

speci�ed more than once for a given slot.

� The :initform slot option is used to provide a default initial value form to be used in the

initialization of the slot. The :initform slot option may be speci�ed once at most for a

given slot. This form is evaluated every time it is used to initialize the slot. The lexical

scope of the identi�ers used in the initialization of the slot is the lexical scope of those

identi�ers in the defclass form. Note that the lexical scope refers both to variable and to

function identi�ers. In contrast, the current dynamic bindings used are those existing

during activation of create. For more information, see x7.4.1.

� The :initarg slot option declares an initialization argument named initarg-name and

speci�es that this initialization argument initializes the given slot. If the initialization

argument and associated value are supplied in the call to initialize-object, the value

will be stored into the given slot and the slot's :initform slot option, if any, is not

evaluated. If none of the initialization arguments speci�ed for a given slot has a value, the

slot is initialized according to the :initform option, if speci�ed. The consequences are

unde�ned if more than one initialization argument for the same slot is supplied. For more

information, see x7.4.1.

The generic functions, to which the methods created by the :reader, :writer, and :accessor

slot options belong are called slot accessors.

No implementation is permitted to extend the syntax of defclass to allow (slot-name form) as

an abbreviation for (slot-name :initform form).

Each class option is an option that refers to the class as a whole. The following class options are

available:

� The :metaclass class option is used to specify that instances of the class being de�ned are

to have a di�erent metaclass than the default provided by the system, that is, di�erent

from the class <standard-class>. The class-name argument is the name of the desired

metaclass. The :metaclass class option may be speci�ed once at most. It is a violation if

<built-in-class> is speci�ed as the metaclass.

� The :abstractp class option is used to specify that the class is an abstract class. If this

option is supplied and abstract-ag is t, create will signal an error if an attempt is made

to create an instance of this class. If the option is unsupplied, or if abstract-ag is nil, the

class is not an abstract class. It is a violation if the abstract-ag is supplied but is neither t

nor nil.

47

ISLISP Working Draft 20.3 PUBLIC DOMAIN

The following rules of defclass hold for standard classes:

� The defclass de�ning form must be in the scope of any superclass identi�er it refers to.

� All the superclasses of a class must be de�ned before an instance of the class can be made.

� Any reference to class-name as a parameter specializer in a defmethod form must be in the

scope of class-name. That is, a defmethod form that names a class must textually follow

the defclass form that de�nes that class.

An ISLISP processor may be extended to cover situations where these rules are not obeyed.

These extensions shall be implementation de�ned.

Some slot options are inherited by a class from its superclasses, and some can be shadowed or

altered by providing a local slot description. No class options are inherited. For a detailed

description of how slots and slot options are inherited, see the section x7.1.3.

If no slot accessors are speci�ed for a slot, the slot cannot be accessed.

When a class is de�ned, the order in which its direct superclasses are mentioned in the de�ning

form is important. The new class has a local precedence order, which is a list consisting of

the class followed by its direct superclasses in the order mentioned in its defclass de�ning form.

7.1.1 Determining the Class Precedence List

The defclass de�ning form for a class provides a total ordering on that class and its direct

superclasses. This ordering is called the local precedence order. It is an ordered list of the class

and its direct superclasses. The class precedence list for a class C is a total ordering on C and

its superclasses that is consistent with the local precedence orders for each of C and its

superclasses.

The class precedence list is always consistent with the local precedence order of each class in the

list. The classes in each local precedence order appear within the class precedence list in the

same order.

Let C1; : : : ; Cn be the direct superclasses of C in the order de�ned in the defclass de�ning form

for C. Let P1; : : : ; Pn be the class precedence lists for C1; : : : ; Cn, respectively. De�ne P �Q on

class precedence lists P and Q to be the two lists appended. Then the class precedence list for C

is C �P1 � : : : � Pn with duplicate classes removed by repeated application of the following rule: If

a class appears twice in the resulting class precedence list, the leftmost occurrence is removed.

It is a violation if an attempt is made to de�ne an instance of <standard-class> whose direct

superclasses have class precedence lists with classes other than <standard-object> and

<object> in common.

7.1.2 Accessing Slots

Slots can be accessed by use of the slot accessors created or modi�ed by the defclass de�ning

form.

48

PUBLIC DOMAIN ISLISP Working Draft 20.3

The defclass de�ning form provides syntax for generating methods to retrieve and store slot

values. If a reader is requested, a method is automatically generated for retrieving the value of

the slot, but no method for storing a value into it is generated. If a writer is requested, a

method is automatically generated for storing a value into the slot, but no method for retrieving

its value is generated. If an accessor is requested, a method for retrieving the value of the slot

and a method for storing a value into the slot are automatically generated.

When a reader or writer is speci�ed for a slot, the name of the generic function to which the

generated method belongs is directly speci�ed. If the name speci�ed for the writer option is the

identi�er name, the name of the generic function for storing a value into the slot is the identi�er

name, and the generic function takes two arguments: the new value and the instance, in that

order. If the name speci�ed for the accessor option is the identi�er name, the name of the

generic function for retrieving the slot value is the identi�er name, and storing a value into the

slot can be done by using the syntax (setf (name instance) new-value).

A generic function created or modi�ed by supplying reader, writer, or accessor slot options is a

direct instance of <standard-generic-function>.

7.1.3 Inheritance of Slots and Slot Options

The set of the names of all slots accessible in an instance of a class C is the union of the sets of

names of slots de�ned by C and its superclasses. The structure of an instance is the set of

names of slots in that instance.

In the simplest case, only one class among C and its superclasses de�nes a slot with a given slot

name. If a slot is de�ned by a superclass of C, the slot is said to be inherited. The

characteristics of the slot are determined by the slot speci�er of the de�ning class.

In general, more than one class among C and its superclasses can de�ne a slot with a given

name. In such cases, only one slot with the given name is accessible in an instance of C, and the

characteristics of that slot are a combination of the several slot speci�ers, computed as follows:

� All the slot speci�ers for a given slot name are ordered from most speci�c to least speci�c,

according to the order in C's class precedence list of the classes that de�ne them. All

references to the speci�city of slot speci�ers immediately below refer to this ordering.

� The default initial value form for a slot is the value of the :initform slot option in the

most speci�c slot speci�er that contains one. If no slot speci�er contains an :initform slot

option, the slot has no default initial value form.

The :reader, :writer, and :accessor slot options create methods rather than de�ne the

characteristics of a slot. Reader and writer methods are inherited in the sense described in the

section x7.2.3.

7.2 Generic Functions

A generic function is a function whose application behavior depends on the classes of the

arguments supplied to it. A generic function object contains a set of methods, a lambda-list, a

method combination type, and other information. The methods de�ne the class-speci�c behavior

49

ISLISP Working Draft 20.3 PUBLIC DOMAIN

and operations of the generic function; a method is said to specialize a generic function. When

invoked, a generic function executes a subset of its methods based on the classes of its arguments.

A generic function can be used in the same ways that an ordinary function can be used.

A method consists of a method function, a lambda list, a sequence of parameter specializers

that specify when the given method is applicable, and a sequence of quali�ers that is used by

the method combination facility to distinguish among methods. Each required formal parameter

of each method has an associated parameter specializer, and the method is invoked only on

arguments that satisfy its parameter specializers.

The method combination facility controls the selection of methods, the order in which they are

activated, and the value that is returned by the generic function. ISLISP provides a default

method combination type and provides a facility for declaring new types of method combination.

Like an ordinary ISLISP function, a generic function takes arguments, performs a series of

operations, and returns a value. An ordinary function has a single body of code that is always

executed when the function is called. A generic function has a set of bodies of code of which a

non-empty subset is selected for execution. The selected bodies of code and the manner of their

combination are determined by the classes of the arguments to the generic function and by its

method combination type.

(generic-function-p obj) ! boolean function

Returns t if obj is a generic function; otherwise, returns nil. obj may be any ISLISP object.

7.2.1 De�ning Generic Functions

Some forms specify the options of a generic function, such as the type of method combination it

uses or its argument precedence order. These forms will be referred to as \forms that specify

generic function options." These forms are the defgeneric de�ning forms.

Some forms de�ne methods for a generic function. These forms will be referred to as

\method-de�ning forms." These forms are the defmethod and defclass de�ning forms.

During preparation for execution, a defmethod form must be preceded by the defgeneric form

for the generic function to be specialized. (Methods implicitly de�ned by defclass due to

:reader, :writer, or :accessor options do not need a preceding defgeneric.)

(defgeneric func-spec lambda-list foption j method-descg*) ! <symbol>de�ning operator

Where:

func-spec ::= identi�er j (setf identi�er)
lambda-list ::= (var* [&rest var]) j

(var* [:rest var])
option ::= (:method-combination symbol) j

(:generic-function-class class-name)
method-desc ::= (:method method-quali�er* parameter-pro�le form*)

50

PUBLIC DOMAIN ISLISP Working Draft 20.3

method-quali�er ::= :before j :after j :around
parameter-pro�le ::= (fvar j (var parameter-specializer-name)g* [f&rest j :restgvar])
parameter-specializer-name ::= class-name
class-name ::= identi�er

The defgeneric de�ning form is used to de�ne a generic function and to specify options and

declarations that pertain to a generic function as a whole.

It returns the generic function name func-spec.

The scope of the generic function identi�er func-spec is the entire current toplevel scope.

Each method-desc de�nes a method on the generic function. The lambda-list of each method

must be congruent with lambda-list . See the section x7.2.2.2 for a de�nition of congruence in this

context.

The lambda-list argument is an ordinary function lambda-list.

The following options are provided. A given option may occur only once.

� The :generic-function-class option speci�es that the generic function is to have a

di�erent class from the default provided by the system, that is, di�erent from the class

<standard-generic-function>. The class-name argument is the name of a class that can

be the class of a generic function.

� The :method-combination option is followed by a symbol or keyword that names a type

of method combination. The names of the built-in method combination types are nil and

standard.

The method-desc arguments de�ne methods that will belong to the generic function, as if de�ned

by defmethod. The method-quali�er and parameter-pro�le arguments in a method description

are the same as for defmethod. The form arguments specify the method body.

If no method descriptions are speci�ed, a generic function with no methods is created. An error

shall be signaled if a generic function is called and no methods apply.

The lambda-list argument of defgeneric speci�es the shape of lambda-lists for the methods on

this generic function. All methods on the resulting generic function must have lambda-lists that

are congruent with this shape. For further details on method congruence, see x7.2.2.2.

Implementations can extend defgeneric to include other implementation-de�ned options.

7.2.2 De�ning Methods for Generic Functions

(defmethod func-spec method-quali�er* parameter-pro�le form*)
! <symbol> de�ning operator

Where:

51

ISLISP Working Draft 20.3 PUBLIC DOMAIN

func-spec ::= identi�er j (setf identi�er)
method-quali�er ::= :before j :after j :around
parameter-pro�le ::= (fvar j (var parameter-specializer-name)g* [f&rest j :restgvar])
parameter-specializer-name ::= class-name
class-name ::= identi�er

The defmethod de�ning form de�nes a method on a generic function. It returns the generic

function name func-spec.

A method-de�ning form contains the code that is to be executed when the arguments to the

generic function cause the method that it de�nes to be invoked.

Preparing a method-de�ning form for execution causes one of the following cases:

� It is a violation if the given name func-spec already designates a generic function and this

generic function contains a method that agrees with the new one on parameter specializers

and quali�ers. For a de�nition of one method agreeing with another on parameter

specializers and quali�ers, see the section x7.2.2.1.

� If the given name func-spec designates a generic function and this generic function does not

contain a method that agrees with the new one on parameter specializers and quali�ers,

the new method is added to the generic function.

� It is a violation if the defmethod de�ning form is in the scope of a func-spec identi�er that

does not designate a generic function.

� It is a violation if the given name func-spec does not exist in the current toplevel scope

immediately containing the defmethod de�ning form. Furthermore, it is a violation if a

defgeneric form for func-spec does not precede the method-de�ning form in the text unit

being prepared for execution unless the method-de�ning form is a defclass.

The lambda-list of the method being de�ned must be congruent with the lambda-list of the

generic function. See x7.2.2.2 for a de�nition of congruence in this context.

Each method-quali�er argument is an object that is used as an attribute to the given method by

method combination. A method quali�er is a non-nil symbol or keyword. The method

combination type further restricts what a method quali�er may be. The standard method

combination type allows for unquali�ed methods or methods whose sole quali�er is one of the

keywords :before, :after, :around.

The parameter-pro�le argument is like an ordinary function lambda-list except that the names of

required parameters can be replaced by specialized parameters. A specialized parameter is a list

of the form (variable-name parameter-specializer-name). Only required parameters may be

specialized. A parameter specializer name is an identi�er that names a class. If no parameter

specializer name is speci�ed for a given required parameter, the parameter specializer defaults to

the class named <object>.

The form arguments specify the method body.

No two methods with agreeing parameter specializers and quali�ers may be de�ned for the same

generic function. See the section x7.2.2.1 for a de�nition of agreement in this context.

A method is not a function and cannot be invoked as a function.

52

PUBLIC DOMAIN ISLISP Working Draft 20.3

Each method has a specialized lambda-list, which determines when that method can be

applied. A specialized lambda-list is like an ordinary lambda-list except that a specialized

parameter may occur instead of the name of a required parameter.

7.2.2.1 Agreement on Parameter Specializers and Quali�ers Two methods are said

to agree with each other on parameter specializers and quali�ers if the following conditions hold:

1. Both methods have the same number of required parameters. Suppose the parameter

specializers of the two methods are P1;1 : : : P1;n and P2;1 : : :P2;n.

2. For each 1 � i � n, P1;i agrees with P2;i. The parameter specializer P1;i agrees with P2;i if

P1;i and P2;i denote the same class. Otherwise P1;i and P2;i do not agree.

3. The quali�ers of both methods, if any, are the same.

The parameter specializers are derived from the parameter specializer names as described above.

7.2.2.2 Congruent Lambda-Lists for all Methods of a Generic Function These rules

de�ne the congruence of a set of lambda-lists, including the lambda-list of each method for a

given generic function and the lambda-list speci�ed for the generic function itself, if given.

1. Each lambda-list must have the same number of required parameters.

2. If any lambda-list mentions &rest or :rest, each lambda-list must mention &rest or

:rest.

7.2.3 Inheritance of Methods

A subclass inherits methods in the following sense: Any method applicable to all instances of a

class is also applicable to all instances of any subclass of that class, since they are also instances

of that class.

The inheritance of methods acts the same way regardless of whether the method was created by

using one of the method-de�ning forms or by using one of the defclass options that causes

methods to be generated automatically.

7.3 Calling Generic Functions

When a generic function is called with particular arguments, it must determine the code to

execute. This code is called the e�ective method for those arguments. The e�ective method is

a combination of the applicable methods in the generic function, which might be some or all of

the de�ned methods. An error shall be signaled if a generic function is called and no methods

apply.

When the e�ective method has been determined, it is invoked with the same arguments that

were passed to the generic function. Whatever value it returns is returned as the value of the

generic function.

53

ISLISP Working Draft 20.3 PUBLIC DOMAIN

The e�ective method is determined by the following three-step procedure:

1. Select the applicable methods.

2. Sort the applicable methods by precedence order, putting the most speci�c method �rst.

3. Apply applicable methods according to the method combination.

7.3.1 Selecting the Applicable Methods

Given a generic function and a set of arguments, an applicable method is a method for that

generic function whose parameter specializers are satis�ed by their corresponding arguments.

The following de�nition speci�es what it means for a method to be applicable and for an

argument to satisfy a parameter specializer.

Let hA1; : : : ; Ani be the required arguments to a generic function in order. Let hP1; : : : ; Pni be
the parameter specializers corresponding to the required parameters of the method M in order.

The method M is applicable when each Ai satis�es Pi. If Pi is a class, and if Ai is an instance

of a class C, then it is said that Ai satis�es Pi when C = Pi or when C is a subclass of Pi.

A method all of whose parameter specializers are the class named <object> is called a default

method; it is always applicable but might be shadowed by a more speci�c method.

Methods can have quali�ers, which give the method combination procedure a way to

distinguish among methods. A method that has one or more quali�ers is called a quali�ed

method. A method with no quali�ers is called an unquali�ed method. A quali�er is any

object other than a list; i.e., any non-nil symbol or keyword. The quali�ers de�ned by standard

method combination are keywords.

7.3.2 Sorting the Applicable Methods

To compare the precedence of two methods, their parameter specializers are examined in order.

The examination order is from left to right.

The corresponding parameter specializers from each method are compared. When a pair of

parameter specializers are equal, the next pair are compared for equality. If all corresponding

parameter specializers are equal, the two methods must have di�erent quali�ers; in this case,

either method can be selected to precede the other.

If some corresponding parameter specializers are not equal, the �rst pair of parameter

specializers that are not equal determines the precedence. The more speci�c of the two methods

is the method whose parameter specializer appears earlier in the class precedence list of the

corresponding argument. Because of the way in which the set of applicable methods is chosen,

the parameter specializers are guaranteed to be present in the class precedence list of the class of

the argument.

The resulting list of applicable methods has the most speci�c method �rst and the least speci�c

method last.

54

PUBLIC DOMAIN ISLISP Working Draft 20.3

7.3.3 Applying Methods

In general, the e�ective method is some combination of the applicable methods. It is de�ned by

a form that contains calls to some or all of the applicable methods, returns the value that will be

returned as the value of the generic function, and optionally makes some of the methods

accessible by means of call-next-method. This form is the body of the e�ective method; it is

augmented with an appropriate lambda-list to make it a function.

The role of each method in the e�ective method is determined by its method quali�ers and the

speci�city of the method. A quali�er serves to mark a method, and the meaning of a quali�er is

determined by the way that these marks are used by this step of the procedure. An error shall

be signaled if an applicable method has an unrecognized quali�er.

ISLISP provides two method combination types. To specify that a generic function is to use one

of these method combination types, the name of the method combination type is given as the

argument to the :method-combination option to defgeneric.

The names of the method combination types are nil and standard.

7.3.3.1 Simple Method Combination In the simple case|the nil method combination

type where all applicable methods are primary methods|the e�ective method is the most

speci�c method. That method can call the next most speci�c method by using

call-next-method. The method that call-next-method calls is referred to as the next

method. The predicate next-method-p tests whether a next method exists. An error shall be

signaled if call-next-method is called and there is no next most speci�c method.

7.3.3.2 Standard Method Combination Standard method combination is used if no other

type of method combination is speci�ed or if the method combination standard is speci�ed.

Primary methods de�ne the main action of the e�ective method, while auxiliary methods

modify that action in one of three ways. A primary method has no method quali�ers. An

auxiliary method is a method whose method quali�er is :before, :after, or :around.

� A :before method has the keyword :before as its quali�er. A :before method speci�es

code that is to be run before any primary methods.

� An :after method has the keyword :after as its quali�er. An :after method speci�es

code that is to be run after primary methods.

� An :around method has the keyword :around as its quali�er. An :around method

speci�es code that is to be run instead of other applicable methods but which is able to

cause some of them to be run.

The semantics of standard method combination is as follows:

� If there are any :around methods, the most speci�c :around method is called. It supplies

the value of the generic function.

� Inside the body of an :around method, call-next-method can be used to call the next

method. When the next method returns, the :around method can execute more code,

55

ISLISP Working Draft 20.3 PUBLIC DOMAIN

perhaps based on the returned value. An error shall be signaled if call-next-method is

used and there is no applicable method to call. The function next-method-p can be used

to determine whether a next method exists.

� If an :around method invokes call-next-method, the next most speci�c :around method

is called, if one is applicable. If there are no :around methods or if call-next-method is

called by the least speci�c :around method, the other methods are called as follows:

� All the :before methods are called, in most-speci�c-�rst order. Returned values are

ignored. An error shall be signaled if call-next-method is used in a :before method.

� The most speci�c primary method is called. Inside the body of a primary method, the

form call-next-method can be used to call the next most speci�c primary method. When

that method returns, the previous primary method can execute more code, perhaps based

on the returned value. An error shall be signaled if call-next-method is used and there

are no more applicable primary methods. The next-method-p function can be used to

determine whether a next method exists. If call-next-method is not used, only the most

speci�c primary method is called.

� All the :after methods are called in most-speci�c-last order. Returned values are ignored.

An error shall be signaled if call-next-method is used in an :after method.

� If no :around methods were invoked, the most speci�c primary method supplies the value

returned by the generic function. The value returned by the invocation of

call-next-method in the least speci�c :around method are those returned by the most

speci�c primary method.

An error shall be signaled if there is an applicable method but no applicable primary method

while using standard method combination.

The :before methods are run in most-speci�c-�rst order while the :after methods are run in

least-speci�c-�rst order. The design rationale for this di�erence can be illustrated with an

example. Suppose class C1 modi�es the behavior of its superclass, C2, by adding :before and

:after methods. Whether the behavior of the class C2 is de�ned directly by methods on C2 or

is inherited from its superclasses does not a�ect the relative order of invocation of methods on

instances of the class C1. Class C1's :before method runs before all of class C2's methods.

Class C1's :after method runs after all of class C2's methods.

By contrast, all :around methods run before any other methods run. Thus a less speci�c

:around method runs before a more speci�c primary method.

If only primary methods are used and if call-next-method is not used, only the most speci�c

method is invoked; that is, more speci�c methods shadow more general ones.

7.3.4 Calling More General Methods

(call-next-method) ! <object> local function

The call-next-method function can be used within the body of a method to call the next

method.

It returns the value returned by the method it calls.

56

PUBLIC DOMAIN ISLISP Working Draft 20.3

The type of method combination used determines which methods can invoke call-next-method

and what is the next method to be called.

In the case of simple method combination where the method combination quali�er is nil the

next method is the next most speci�c method.

The standard method combination type allows call-next-method to be used within primary

methods and :around methods. The standard method combination type de�nes the next

method as follows:

� In an :around method, the next method is the next most speci�c :around method.

� In a primary method the next method is the next most speci�c method.

For further discussion of call-next-method, see x7.3.3.

call-next-method passes the current method's original arguments to the next method. Neither

using setq nor rebinding variables with the same names as parameters of the method a�ects the

values call-next-method passes to the method it calls. The call-next-method function returns

the value returned by the method it calls. After call-next-method returns, further computation

is possible. The next-method-p function can be used to test whether there is a next method.

The functional binding of call-next-method is lexical within the body of the method-de�ning

form; i.e., it is as if it were established by labels. The function object to which the binding

refers has inde�nite extent.

An error shall be signaled if call-next-method is used in methods that do not support it. An

error shall be signaled if call-next-method is executed and there is no next method.

(next-method-p) ! boolean local function

The next-method-p function can be used within the body of a method de�ned by a

method-de�ning form to determine whether a next method exists. The next-method-p function

takes no arguments and returns t or nil.

The functional binding of next-method-p is lexical within the body of the method-de�ning form;

i.e., it is as if it were established by labels. The function object to which the binding refers has

inde�nite extent.

7.4 Object Creation and Initialization

(create class finitarg initvalg*) ! <object> generic function

The function create creates and returns a new instance of a class. The argument is a class

object.

The initialization of a new instance consists of several distinct steps, including the following:

allocating storage for the instance, �lling slots with values, and executing user-supplied methods

57

ISLISP Working Draft 20.3 PUBLIC DOMAIN

that perform additional initialization. The last two steps of create are implemented by the

generic function initialize-object to provide a mechanism for customizing those steps. The

initialization arguments (the initargs and initvals) are given as a single list argument to

initialize-object. The instance returned by create is the new instance, which has been

modi�ed and returned by initialize-object.

ISLISP speci�es system-supplied primary methods for each step and thus speci�es a well-de�ned

standard behavior for the entire initialization process. The standard behavior provides two

simple mechanisms for controlling initialization:

� Supplying a default initial value form for a slot. A default initial value form for a slot is

de�ned by using the :initform slot option to defclass. This default initial value form is

evaluated (with scope rules as in the description of the :initform option to defclass),

and the resulting value is stored in the slot.

� De�ning methods for initialize-object. The slot-�lling behavior described above is

implemented by a system-supplied primary method for initialize-object.

7.4.1 Initialize-Object

The generic function initialize-object is called by create to initialize a newly created

instance. It uses standard method combination. Methods for initialize-object can be de�ned

on user-de�ned classes in order to augment or override the system-supplied slot-�lling

mechanisms (described below).

During initialization, initialize-object is invoked after a new instance whose slots are

unbound has been created.

The generic function initialize-object is called with the new instance. There is a

system-supplied primary method for initialize-object whose parameter specializer is the

class <standard-object>. This method �lls in the slots according to the initialization

arguments provided and according to the :initform forms for the slots as follows:

� If the slot already has a value, no attempt is made to change that value.

� If an initialization argument and value pair for the slot was provided among the

initialization arguments, the slot is initialized with the value from that pair. The name of

the initialization argument for a slot is declared by the :initarg option to slots in

defclass. The consequences are unde�ned if more than one initialization argument for the

same slot is supplied.

� If the slot has a default initial value form (see defclass), that form is evaluated in the

lexical environment in which that form was established and in the current dynamic

environment. The result of the evaluation is an object which becomes the value of the slot.

� Otherwise, the slot is left uninitialized.

Methods for initialize-object can be de�ned to specify actions to be taken when an instance

is initialized. If only :after methods for initialize-object are de�ned, they will be run after

the system-supplied primary method for initialization and therefore will not interfere with the

default behavior of initialize-object.

58

PUBLIC DOMAIN ISLISP Working Draft 20.3

(initialize-object instance initialization-arguments) ! <object> generic function

The generic function initialize-object is called by create to initialize a newly created

instance. The generic function initialize-object is called with the new instance and a list of

initialization arguments.

The system-supplied primary method on initialize-object initializes the slots of the instance

with values according to the initialization-arguments (an alternating list of initialization

argument keywords and values) and the :initform forms of the slots (see x7.4.1).

The instance argument is the object to be initialized. The modi�ed instance is returned as the

result. Programmers can de�ne methods for initialize-object to specify actions to be taken

when an instance is initialized. If only :after methods are de�ned, they will be run after the

system-supplied primary method for initialization and therefore will not interfere with the

default behavior of initialize-object. The consequences are unde�ned if a

programmer-de�ned primary method for this generic function does not return instance.

7.5 Class Enquiry

(class-of object) ! <class> function

Returns the class of which the given object is a direct instance. object may be any ISLISP object.

(instancep object class) ! boolean function

Returns t if object is an instance (directly or otherwise) of the class class; otherwise, returns nil
object may be any ISLISP object. An error shall be signaled if class is not a class object (error-id.
domain-error).

(subclassp class1 class2) ! boolean function

Returns t if the class class1 is a subclass of the class class2; otherwise, returns nil. An error

shall be signaled if either class1 or class2 is not a class object (error-id. domain-error).

(class class-name) ! <class> special operator

Returns the class object that corresponds to the class named class-name.

59

ISLISP Working Draft 20.3 PUBLIC DOMAIN

8 Macros

Macros are a feature to extend the language syntactically. A macro is an abstraction for surface

transformations. Because ISLISP texts (e.g., function de�nitions) can be represented internally

by objects in ISLISP, the surface transformations can be described by means of list processing.

Forms are represented by conses or other objects and a macro describes a transformation

function from one group of objects onto another.

Macros can be internally de�ned by expander functions which implement the transformation

from one group of objects to another. The operation of an expander functions is speci�ed by a

defmacro de�ning form.

An expander receives a form as argument and returns a di�erent form as value. The primary

activity of an expander is to create sets of nested lists; for this purpose, the backquote facility is

provided.

Macros are expanded at preparation time. No runtime information is available.

The set of usable operations is restricted to simple data structure creation and manipulation;

those operations are forbidden that cause side-e�ects to the environment (such as I/O to the

terminal), to externally accessible data structure (such as a modi�cation to the property list of a

symbol), or to the macro form itself.

Macro de�nitions are allowed only at toplevel. Rede�nition (i.e., multiple de�nition) of macros is

forbidden. A macro's de�nition must textually precede any use of that macro during preparation

for execution.

The result of expanding a macro form is another form. If that form is a macro form, it is

expanded by the same mechanism until the result is not a macro form.

When a toplevel form is a macro form, its resulting macro expansion is also considered to be a

toplevel form.

A macro form can appear as the place speci�ed in a setf special form. See setf on page 32.

(defmacro macro-name lambda-list form*) ! <symbol> de�ning operator

De�nes a named (toplevel) macro. No implicit block with the macro name is established when

the macro-expansion function is invoked. macro-name must be an identi�er whose scope is the

current toplevel scope in which the defmacro form appears. lambda-list is as de�ned in page 21.

The de�nition point of macro-name is the closing parenthesis of the lambda-list .

Example:

(defmacro caar(x) (list 'car (list 'car x)))

) caar

60

PUBLIC DOMAIN ISLISP Working Draft 20.3

`form ! <object> syntax

,form ! <object> syntax

,@form ! <object> syntax

` or quasiquote constructs a list structure. quasiquote, like quote, returns its argument

unevaluated if no commas or the syntax , (unquote) or ,@ (unquote-splicing) appear within the

form.

, (unquote) syntax is valid only within ` (quasiquote) expressions. When appearing within a

quasiquote the form is evaluated and its result is inserted into the quasiquote structure instead

of the unquote form.

,@ (unquote-splicing) is also syntax valid only within ` expressions. When appearing within a

quasiquote the expression form must evaluate to a list. The elements of the list are spliced into

the enclosing list in place of the unquote-splicing form sequence.

Quasiquote forms may be nested. Substitutions are made only for unquoted expressions

appearing at the same nesting level, which increases by one inside each successive quasiquotation

and decreases by one inside each unquotation.

Example:

�(list ,(+ 1 2) 4)

) (list 3 4)

(let ((name 'a)) �(list name ,name ',name))

) (list name a (quote a))

�(a ,(+ 1 2) ,@(create-list 3 'x) b)

) (a 3 x x x b)

�((foo ,(- 10 3)) ,@(cdr '(c)) . ,(car '(cons)))

) ((foo 7) . cons)

�(a �(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)

) (a �(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((name1 'x)

(name2 'y))

�(a �(b ,,name1 ,',name2 d) e))

) (a �(b ,x ,'y d) e)

9 Declarations and Coercions

(the class-name form) ! <object> special operator

(assure class-name form) ! <object> special operator

These forms evaluate form. If form returns, the returned value is returned by the the or assure

form. In addition, these forms specify that the value of form is of the class speci�ed by

class-name (which must be the name of an existing class).

61

ISLISP Working Draft 20.3 PUBLIC DOMAIN

In a the special form, the consequences are unde�ned if the value of form is not of the class or a

subclass of the class designated by class-name (error-id. domain-error). In an assure special

form, an error shall be signaled if the value of form is not of the class or a subclass of the class

designated by class-name (error-id. domain-error).

Example:

(the <integer> 10)) 10

(the <number> 10)) 10

(the <float> 10) the consequences are unde�ned
(assure <integer> 10)) 10

(assure <number> 10)) 10

(assure <float> 10) an error shall be signaled

(convert obj class-name) ! <object> special operator

Returns an object of class class-name which corresponds to the object obj according to one of

the following projections, called a coercion function. The table shows obj along the left-hand
column and class-name along the top row (with <>'s in class names omitted here only for textual

brevity):

character integer oat symbol string general-vector list

character = I { I(3) {(4) { {

integer I = X { X(5) { {

oat { {(1) = { X(6) { {

symbol { { { = I(3) { {

string { X(2) X(2) I(3) = X(7) X

general-vector { { { { { = X

list { { { { { X =

Legend:

= This is the identity function

X This coercion shall be provided

X(2) An error shall be signaled if this coercion is attempted and the string does not

contain the textual representation of a number of the target class. In all other

respects, this is the same as parse-number.

X(5) This may be the same as the ~D format directive.

X(6) This may be the same as the ~G format directive.

X(7) This is the identity if strings are vectors in the implementation.

I This coercion shall be provided, but its de�nition is implementation de�ned.

I(3) This coercion shall be provided, but its de�nition is implementation de�ned. The

coercion depends on the implementation's neutral alphabetic characters (see x10.1.2).

{ An error shall be signaled if this coercion is attempted.

62

PUBLIC DOMAIN ISLISP Working Draft 20.3

{(1) Programmers requiring this kind of functionality may wish to consider instead using

one of the functions, floor, ceiling, round, or truncate.

{(4) programmers requiring this kind of functionality may wish to consider instead using

the following: (create-string 1 obj)

If an implementation provides implementation-de�ned classes, it may also provide

implementation-de�ned coercions for the names of those classes using convert.

Example:

(convert 3 <float>)) 3.0

(convert "abc" <general-vector>)) #(#na #nb #nc)
(convert #(a b) <list>)) (a b)

10 Symbol class

A symbol (an instance of class <symbol>) is an object. Symbols can be named or unnamed. A

symbol's name is sometimes called a print name because it is used to identify the symbol

during reading and printing. Symbols can have associated properties.

(symbolp obj) ! boolean function

Returns t if obj is a symbol (instance of class <symbol>); otherwise, returns nil. The obj may

be any ISLISP object.

Example:

(symbolp 'a)) t

(symbolp "a")) nil

(symbolp #na)) nil

(symbolp 't)) t

(symbolp t)) t

(symbolp 'nil)) t

(symbolp nil)) t

(symbolp '())) t

(symbolp '*pi*)) t

(symbolp *pi*)) nil

10.1 Symbol Names

Symbols can be either named or unnamed.

63

ISLISP Working Draft 20.3 PUBLIC DOMAIN

There is a mapping from names to symbols. Distinct symbols (symbols that are not eq) always

have distinct names. No such mapping is de�ned for unnamed symbols.

The name of a symbol is represented as a string.

10.1.1 Notation for Symbols

The constituent characters of a symbol's name are described in x1.4.

A named symbol is denoted by its print name enclosed within the vertical bars (\|"). However,

the enclosing vertical bars are not necessary if the symbol satis�es the following conditions:

1. The symbol's print name consists only of neutral alphabetic characters (see x10.1.2) or the
following additional characters:

0 1 2 3 4 5 6 7 8 9 + - < > / * = ? _ ! $ % [] ^ { } ~

(This set may have additional implementation-de�ned characters.)

2. The �rst character of the symbol's print name is a neutral alphabetic character or one of

the following characters:

< > / * = ? _ ! $ % [] ^ { } ~

(This set may have additional implementation-de�ned characters.)

In addition, the following are the names of symbols that can be written without enclosing

vertical bars:

+ - 1+ 1-

If the symbol name contains a vertical bar, the vertical bar must be preceded by a backslash \\".

If the symbol name contains a backslash, the backslash must be preceded by another backslash.

For example, \|\\\\\|\\\||" denotes a symbol whose name is a 5 character string containing

backslash, backslash, vertical bar, backslash, vertical bar.

Note: All required symbols can be written without vertical bars.

It is implementation de�ned whether the names of symbols can contain colon (:) or ampersand

(&). Consequently, whether &rest, :rest, and keywords (e.g., :before and :after) are

represented as symbols or something else is implementation de�ned.

10.1.2 Alphabetic Case in Symbol Names

If the enclosing vertical bars are omitted, the case of alphabetic characters in a symbol is

translated by the reader to a canonical case that is used internally. Therefore, for example, each

of the following denotes the same symbol in all implementations:

foo foO fOo fOO Foo FoO FOo FOO

64

PUBLIC DOMAIN ISLISP Working Draft 20.3

Internally, alphabetic case in a symbol's print name is maintained, and is signi�cant. For

example, |FOO| and |foo| are not the same symbol in any implementation. However, the reader

canonicalizes the case of symbols whose names are not written enclosed by vertical bars. So foo

and FOO both represent the same symbol, but it is implementation de�ned whether that symbol

is |foo| or |FOO|.

Speci�cally, each implementation has an implementation-de�ned attribute called its neutral

alphabetic case, which is either \lowercase" or \uppercase." If the neutral alphabetic case of

an implementation is lowercase, the neutral alphabetic characters for that implementation

are de�ned to be as follows:

a b c d e f g h i j k l m n o p q r s t u v w x y z

Otherwise (if the neutral alphabetic case of an implementation is uppercase), the neutral

alphabetic characters for that implementation are de�ned to be as follows:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Continuing again with the above example, if the neutral alphabetic case of an implementation is

lowercase, foo, FOO and |foo| denote the same symbol; otherwise, foo, FOO and |FOO| denote

the same symbol.

An implementation may extend the set of neutral alphabetic characters to include additional

implementation-de�ned characters.

10.1.3 nil and ()

The symbol nil, which represents both the false value and the empty list, can also be denoted

by ().

10.2 Symbol Properties

A property of a symbol is a named association between a property indicator and a property

value. A symbol s is said to have a property p if a property indicator p is associated with s.

(property symbol property-name [obj]) ! <object> function

Returns the value of the property named property-name associated with the symbol symbol . If
symbol has no property named property-name, obj (which defaults to nil) is returned.

An error shall be signaled if either symbol or property-name is not a symbol (error-id.

domain-error). obj may be any ISLISP object

Example:

(property 'zeus 'daughter)) athena

65

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(setf (property symbol property-name) obj) ! <object> special form

(set-property obj symbol property-name) ! <object> function

Causes obj to be the new value of the property named property-name asssociated with the

symbol symbol . If the property named property-name already exists, its corresponding property

value is replaced; otherwise, a new property is created. obj is returned.

An error shall be signaled if either symbol or property-name is not a symbol (error-id.

domain-error). obj may be any ISLISP object

Example:

(setf (property 'zeus 'daughter) 'athena)

) athena

(set-property 'athena 'zeus 'daughter)

) athena

(remove-property symbol property-name) ! <object> function

Removes the property property-name associated with symbol and returns the property value of

the removed property if there is such a property. If there is no such property, nil is returned.

An error shall be signaled if either symbol or property-name is not a symbol (error-id.

domain-error).

Example:

(remove-property 'zeus 'daughter)) athena

10.3 Unnamed Symbols

(gensym) ! <symbol> function

Returns an unnamed symbol. gensym is useful for writing macros. It is impossible for an

identi�er to name an unnamed symbol.

Example:

(defmacro twice (x)

(let ((v (gensym)))

�(let ((,v ,x)) (+ ,v ,v))))) twice

(twice 5)) 10

66

PUBLIC DOMAIN ISLISP Working Draft 20.3

11 Number class

The class <number> has the disjoint subclasses <float> and <integer>.

11.1 Number class

(numberp obj) ! boolean function

Returns t if obj is a number (instance of class <number>); otherwise, returns nil. The obj may

be any ISLISP object.

Example:

(numberp 3)) t

(numberp -0.3)) t

(numberp '(a b c))) nil

(numberp "17")) nil

(parse-number string) ! <number> function

The characters belonging to string are scanned (as if by read) and if the resulting lexeme is the

textual representation of a number, the number it represents is returned.

An error shall be signaled if string is not a string (error-id. domain-error). An error shall be

signaled if string is not the textual representation of a number (error-id. cannot-parse-number).

Example:

(parse-number "123.34")) 123.34

(parse-number "#XFACE")) 64206

(parse-number "-37.") an error shall be signaled
(parse-number "-.5") an error shall be signaled

since oating-point number lexemes have
at least one mantissa digit before and at least
one mantissa digit after the decimal point.

(= x1 x2) ! boolean function

Returns t if x1 has the same mathematical value as x2; otherwise, returns nil. An error shall be

signaled if either x1 or x2 is not a number (error-id. domain-error).

67

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Note: = di�ers from eql because = compares only the mathematical values of its arguments, whereas

eql also compares the representations.

Example:

(= 3 4)) nil

(= 3 3.0)) t

(= (parse-number "134.54") 134.54)) t

(= 0.0 -0.0)) t

(/= x1 x2) ! boolean function

Returns t if x1 and x2 have mathematically distinct values; otherwise, returns nil. An error

shall be signaled if either x1 or x2 is not a number (error-id. domain-error).

Example:

(/= 3 4)) t

(/= 3 3.0)) nil

(/= (parse-number "134.54") 134.54)) nil

(>= x1 x2) ! boolean function

(<= x1 x2) ! boolean function

(> x1 x2) ! boolean function

(< x1 x2) ! boolean function

>= returns t if x1 is greater than or = x2. <= returns t if x1 is less than or = x2. > returns t if x1
is greater than x2. < returns t if x1 is less than x2.

The mathematical values of the arguments are compared. An error shall be signaled if either x1
or x2 is not a number (error-id. domain-error).

Example:

(> 2 2)) nil

(> 2.0 2)) nil

(> 2 -10)) t

(> 100 3)) t

(< 2 2)) nil

(< 1 2)) t

(>= 2 2)) t

(>= 2.0 2)) t

(>= -1 2)) nil

(<= -1 2)) t

(<= 2 -1)) nil

68

PUBLIC DOMAIN ISLISP Working Draft 20.3

In the remaining de�nitions in this section, any noted coercion to <float> is done as if by float

or by (convert <float> z).

(+ x*) ! <number> function

(* x*) ! <number> function

The functions + and * return the sum and the product, respectively, of their arguments. If all

arguments are integers, the result is an integer. If any argument is a oat, the result is a oat.

When given no arguments, + returns 0 and * returns 1. An error shall be signaled if any x is not

a number (error-id. domain-error).

Example:

(+ 12 3)) 15

(+ 1 2 3)) 6

(+ 12 3.0)) 15.0

(+ 4 0.0)) 4.0

(+)) 0

(* 12 3)) 36

(* 12 3.0)) 36.0

(* 4.0 0)) 0.0

(* 2 3 4)) 24

(*)) 1

(- x+) ! <number> function

Given one argument, x , this function returns its additive inverse. An error shall be signaled if x
is not a number (error-id. domain-error).

If an implementation supports a -0.0 that is distinct from 0.0, then (- 0.0) returns -0.0; in

implementations where -0.0 and 0.0 are not distinct, (- 0.0) returns 0.0.

Example:

(- 1)) -1

(- -4.0)) 4.0

(- 4.0)) -4.0

(eql (- 0.0) -0.0)) t

(eql (- -0.0) 0.0)) t

Given more than one argument, x1 : : : xn, - returns their successive di�erences, x1�x2� : : :�xn.
An error shall be signaled if any x is not a number (error-id. domain-error).

Example:

(- 1 2)) -1

69

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(- 92 43)) 49

(- 2.3 -3.0)) 5.3

(- 0.0 0.0)) 0.0

(- 3 4 5)) -6

(quotient dividend divisor+) ! <number> function

(reciprocal x) ! <number> function

The function reciprocal returns the reciprocal of its argument x ; that is, 1=x . An error shall be

signaled if x is zero (error-id. division-by-zero).

The function quotient, given two arguments dividend and divisor , returns the quotient of those
numbers. The result is an integer if dividend and divisor are integers and divisor evenly divides

dividend , otherwise it will be a oat.

Given more than two arguments, quotient operates iteratively on each of the divisor1 : : :
divisorn as in dividend=divisor1= : : :=divisorn. The type of the result follows from the

two-argument case because the three-or-more-argument quotient can be de�ned as follows:

(quotient dividend divisor1 divisor2 : : :)

� (quotient (quotient dividend divisor1) divisor2 : : :)

An error shall be signaled if dividend is not a number (error-id. domain-error). An error shall be

signaled if any divisor is not a number (error-id. domain-error). An error shall be signaled if

any divisor is zero (error-id. division-by-zero).

Example:

(reciprocal 2)) 0.5

(quotient 10 5)) 2

(quotient 1 2)) 0.5

(quotient 2 -0.5)) -4.0

(quotient 0 0.0) an error shall be signaled
(quotient 2 3 4)) 0.16666666666666666

(max x+) ! <number> function

(min x+) ! <number> function

The function min returns the least (closest to negative in�nity) of its arguments. The

comparison is done by <.

The function max returns the greatest (closest to positive in�nity) of its arguments. The

comparison is done by >.

An error shall be signaled if any x is not a number (error-id. domain-error).

70

PUBLIC DOMAIN ISLISP Working Draft 20.3

Example:

(max -5 3)) 3

(max 2.0 3)) 3

(max 2 2.0)) 2 or 2.0 (implementation-de�ned)
(max 1 5 2 4 3)) 5

(min 3 1)) 1

(min 1 2.0)) 1

(min 2 2.0)) 2 or 2.0 (implementation-de�ned)
(min 1 5 2 4 3)) 1

(abs x) ! <number> function

The function abs returns the absolute value of its argument. An error shall be signaled if x is

not a number (error-id. domain-error).

Example:

(abs -3)) 3

(abs 2.0)) 2.0

(abs -0.0)) 0.0

(exp x) ! <number> function

Returns e raised to the power x , where e is the base of the natural logarithm. An error shall be

signaled if x is not a number (error-id. domain-error).

Example:

(exp 1)) 2.718281828459045

(exp 2)) 7.38905609893065

(exp 1.23)) 3.4212295362896734

(exp 0)) 1 or 1.0 (implementation-de�ned)

(log x) ! <number> function

Returns the natural logarithm of x . An error shall be signaled if x is not a positive number

(error-id. domain-error).

Example:

71

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(log 2.718281828459045)) 1.0

(log 10)) 2.302585092994046

(log 1)) 0 or 0.0 (implementation-de�ned)

(expt x1 x2) ! <number> function

Returns x1 raised to the power x2. The result will be an integer if x1 is an integer and x2 is a

non-negative integer. An error shall be signaled if x1 is zero and x2 is negative, or if x1 is zero

and x2 is a zero oat, or if x1 is negative and x2 is not an integer.

Example:

(expt 2 3)) 8

(expt -100 2)) 10000

(expt 4 -2)) 0.0625

(expt 0.5 2)) 0.25

(expt x 0)) 1 if x is an integer
(expt x 0)) 1.0 if x is a oat
(expt -0.25 -1)) -4.0

(expt 100 0.5)) 10.0

(expt 100 -1.5)) 0.001

(expt x 0.0)) 1.0 if x is a positive oat
(expt 0.0 0.0) an error shall be signaled

(sqrt x) ! <number> function

Returns the square root of x . An error shall be signaled if x is not a non-negative number

(error-id. domain-error).

Example:

(sqrt 4)) 2

(sqrt 2)) 1.4142135623730951

(sqrt -1) an error shall be signaled

pi ! <oat> named constant

The value of this constant is an approximation of �.

Example:

pi) 3.141592653589793

72

PUBLIC DOMAIN ISLISP Working Draft 20.3

(sin x) ! <number> function

(cos x) ! <number> function

(tan x) ! <number> function

The function sin returns the sine of x . The function cos returns the cosine of x . The function
tan returns the tangent of x . In each case, x must be given in radians.

An error shall be signaled if x is not a number (error-id. domain-error).

Example:

;; Note that conforming processors are permitted to vary

;; in the floating precision of these results.

(sin 1)) 0.8414709848078965

(sin 0)) 0 or 0.0 (implementation-de�ned)
(sin 0.001)) 9.999998333333417E-4

(cos 1)) 0.5403023058681398

(cos 0)) 1 or 1.0 (implementation-de�ned)
(cos 0.001)) 0.9999995000000417

(tan 1)) 1.557407724654902

(tan 0)) 0 or 0.0 (implementation-de�ned)
(tan 0.001)) 0.0010000003333334668

(atan x) ! <number> function

Returns the arc tangent of x . This can be mathematically de�ned as follows:

�i log
�
(1 + ix)

p
1=(1 + x2)

�

This formula is mathematically correct, assuming completely accurate computation. It is not

necessarily the simplest one for real-valued computations.

The result is a (real) number that lies between ��=2 and �=2 (both exclusive).

The following de�nition for (one-argument) arc tangent determines the range and branch cuts:

arctan x =
log (1 + ix)� log (1� ix)

2i

Note: Beware of simplifying this formula; \obvious" simpli�cations are likely to alter the branch cuts

or the values on the branch cuts incorrectly. The branch cut for the arc tangent function is in two pieces:

one along the positive imaginary axis above i (exclusive), continuous with quadrant II, and one along the

negative imaginary axis below �i (exclusive), continuous with quadrant IV. The points i and �i are

excluded from the domain. The range is that strip of the complex plane containing numbers whose real

part is between ��=2 and �=2. A number with real part equal to ��=2 is in the range if and only if its

73

ISLISP Working Draft 20.3 PUBLIC DOMAIN

y Condition x Condition Cartesian locus Range of result

y = 0 x > 0 Positive x-axis 0

* y = +0 x > 0 Positive x-axis +0

* y = �0 x > 0 Positive x-axis �0
y > 0 x > 0 Quadrant I 0 < result < �=2

y > 0 x = 0 Positive y-axis �=2

y > 0 x < 0 Quadrant II �=2 < result < �

y = 0 x < 0 Negative x-axis �

* y = +0 x < 0 Negative x-axis +�

* y = �0 x < 0 Negative x-axis ��
y < 0 x < 0 Quadrant III �� < result < ��=2
y < 0 x = 0 Negative y-axis ��=2
y < 0 x > 0 Quadrant IV ��=2 < result < 0

y = 0 x = 0 Origin unde�ned consequences

* y = +0 x = +0 Origin +0

* y = �0 x = +0 Origin �0
* y = +0 x = �0 Origin +�

* y = �0 x = �0 Origin ��

Figure 3. Quadrant information for atan2

imaginary part is strictly positive; a number with real part equal to �=2 is in the range if and only if its

imaginary part is strictly negative.

An error shall be signaled if x is not a number (error-id. domain-error).

(atan2 x1 x2) ! <number> function

Given a point (x2; x1) in rectangular coordinates, this function returns the phase of its

representation in polar coordinates. If x1 is zero and x2 is negative, the result is positive. If x1
and x2 are both zero, the result is implementation de�ned.

An error shall be signaled if x is not a number (error-id. domain-error).

The value of atan2 is always between �� (exclusive) and � (inclusive) when minus zero is not

supported; when minus zero is supported, the range includes ��.

The signs of x1 (indicated as x) and x2 (indicated as y) are used to derive quadrant information.

Figure 11.1 details various special cases. The asterisk (*) indicates that the entry in the �gure

applies to implementations that support minus zero.

Example:

(atan2 0 3.0)) 0 or 0.0 (implementation-de�ned)
(atan2 1 1)) 0.7853981633974483

(atan2 1.0 -0.3)) 1.8622531212727635

(atan2 0.0 -0.5)) 3.141592653589793

(atan2 -1 -1)) -2.356194490192345

(atan2 -1.0 0.3)) -1.2793396

(atan2 0.0 0.5)) 0.0

74

PUBLIC DOMAIN ISLISP Working Draft 20.3

(defun asin (x) (atan2 x (sqrt (- 1 (expt x 2)))))) asin

(defun acos (x) (atan2 (sqrt (- 1 (expt x 2))) x))) acos

(defun atan (x) (atan2 x 1))) atan

(sinh x) ! <number> function

(cosh x) ! <number> function

(tanh x) ! <number> function

The function sinh returns the hyperbolic sine of x . The function cosh returns the hyperbolic

cosine of x . The function tanh returns the hyperbolic tangent of x .

An error shall be signaled if x is not a number (error-id. domain-error).

Example:

(sinh 1)) 1.1752011936438014

(sinh 0)) 0 or 0.0 (implementation-de�ned)
(sinh 0.001)) 0.001000000166666675

(cosh 1)) 1.5430806348152437

(cosh 0)) 1 or 1.0 (implementation-de�ned)
(cosh 0.001)) 1.0000005000000416

(tanh 1)) 0.7615941559557649

(tanh 0)) 0 or 0.0 (implementation-de�ned)
(tanh 0.001)) 9.999996666668002E-4

(atanh x) ! <number> function

Returns the hyperbolic arc tangent of x . An error shall be signaled if x is not a number with

absolute value less than 1 (error-id. domain-error).

The following de�nition for the inverse hyperbolic tangent determines the range and branch cuts:

arctanh x =
log (1 + x)� log (1� x)

2
:

Note that:

i arctan x = arctanh ix:

The branch cut for the inverse hyperbolic tangent function is in two pieces: one along the

negative real axis to the left of �1 (inclusive), continuous with quadrant III, and one along the

75

ISLISP Working Draft 20.3 PUBLIC DOMAIN

positive real axis to the right of 1 (inclusive), continuous with quadrant I. The points �1 and 1

are excluded from the domain. The range is that strip of the complex plane containing numbers

whose imaginary part is between ��=2 and �=2. A number with imaginary part equal to ��=2
is in the range if and only if its real part is strictly negative; a number with imaginary part equal

to �=2 is in the range if and only if its imaginary part is strictly positive.

Example:

(atanh 0.5)) 0.5493061443340549

(atanh 0)) 0 or 0.0 (implementation-de�ned)
(atanh 0.001)) 0.0010000003333335335

(defun asinh (x) (atanh (quotient x (sqrt (+ 1 (expt x 2))))))) asinh

(defun acosh (x) (atanh (quotient (sqrt (* (- x 1) (+ x 1))) x)))) acosh

11.2 Float class

This class represents the set of oating-point numbers. Each oating-point number is represented

by a rational number with some given precision; see IEEE standard 754-1985 for details.

Floating-point numbers are written in one of the following formats:

[s]dd : : :d.dd : : :d

[s]dd : : :d.dd : : :dE[s]dd : : :d

[s]dd : : :d.dd : : :de[s]dd : : :d

[s]dd : : :dE[s]dd : : :d

[s]dd : : :de[s]dd : : :d

where s is either \+" or \-", and dd : : :d is at least one digit from \0"{\9".

There must be at least one digit before the decimal point and at least one mantissa digit after

the decimal point.

most-positive-float ! <oat> named constant

most-negative-float ! <oat> named constant

The value of *most-positive-float* is the implementation-dependent oating-point number

closest to positive in�nity.

The value of *most-negative-float* is the implementation-dependent oating-point number

closest to negative in�nity.

(floatp obj) ! boolean function

Returns t if obj is a oat (instance of class <float>); otherwise, returns nil. The obj may be

any ISLISP object.

76

PUBLIC DOMAIN ISLISP Working Draft 20.3

Example:

(floatp "2.4")) nil

(floatp 2)) nil

(floatp 2.0)) t

(float x) ! <oat> function

Returns x itself if it is an instance of the class <float> and returns a oating-point

approximation of x otherwise. An error shall be signaled if x is not a number (error-id.

domain-error).

Example:

(float 0)) 0.0

(float 2)) 2.0

(float -2.0)) -2.0

(float 123456789123456789123456789)) 1.2345678912345679E26

(floor x) ! <integer> function

Returns the greatest integer less than or equal to x . That is, x is truncated towards negative

in�nity. An error shall be signaled if x is not a number (error-id. domain-error).

Example:

(floor 3.0)) 3

(floor 3.4)) 3

(floor 3.9)) 3

(floor -3.9)) -4

(floor -3.4)) -4

(floor -3.0)) -3

(ceiling x) ! <integer> function

Returns the smallest integer that is not smaller than x . That is, x is truncated towards positive

in�nity. An error shall be signaled if x is not a number (error-id. domain-error).

Example:

(ceiling 3.0)) 3

77

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(ceiling 3.4)) 4

(ceiling 3.9)) 4

(ceiling -3.9)) -3

(ceiling -3.4)) -3

(ceiling -3.0)) -3

(truncate x) ! <integer> function

Returns the integer between 0 and x (inclusive) that is nearest to x . That is, x is truncated

towards zero. An error shall be signaled if x is not a number (error-id. domain-error).

Example:

(truncate 3.0)) 3

(truncate 3.4)) 3

(truncate 3.9)) 3

(truncate -3.4)) -3

(truncate -3.9)) -3

(truncate -3.0)) -3

(round x) ! <integer> function

Returns the integer nearest to x . If x is exactly halfway between two integers, the even one is

chosen. An error shall be signaled if x is not a number (error-id. domain-error).

Example:

(round 3.0)) 3

(round 3.4)) 3

(round -3.4)) -3

(round 3.6)) 4

(round -3.6)) -4

(round 3.5)) 4

(round -3.5)) -4

(round 2.5)) 2

(round -0.5)) 0

11.3 Integer class

Integer objects correspond to mathematical integers.

Arithmetic operations that only involve integers behave in a mathematically correct way,

regardless of the size of the integer. If there are cases where arithmetic on integers would

78

PUBLIC DOMAIN ISLISP Working Draft 20.3

produce results or intermediate expressions that exceed the precision of the underlying hardware,

an ISLISP processor shall simulate any necessary operations in software in order to assure

mathematical correctness. The circumstances, if any, for which such simulation is necessary is

implementation de�ned; the point at which such simulation will exceed the capacity of the

processor is also implementation de�ned.

Integers are written in one of the following formats.

#B [s]bb : : : b, each b being either \0" or \1".

#b [s]bb : : : b, each b being either \0" or \1".

#O [s]oo : : : o, each o being one of \0"{\7".

#o [s]oo : : : o, each o being one of \0"{\7".

[s]dd : : :d, each d being one of \0"{\9".

#X [s]xx : : :x, each x being one of \0"{\9", \A"{\F", \a"{\f".

#x [s]xx : : :x, each x being one of \0"{\9", \A"{\F", \a"{\f".

where s is either \+" or \-".

Note: In ISLISP, there is no variable that controls the reader. Thus the above notations are exactly the

notations for integers.

(integerp obj) ! boolean function

Returns t if obj is an integer (instance of class <integer>); otherwise, returns nil. obj may be

any ISLISP object.

Example:

(integerp 3)) t

(integerp 3.4)) nil

(integerp "4")) nil

(integerp '(a b c))) nil

(div z1 z2) ! <integer> function

(mod z1 z2) ! <integer> function

div returns the greatest integer less than or equal to the quotient of z1 and z2. An error shall be

signaled if z2 is zero (error-id. division-by-zero).

mod returns the remainder of the integer division of z1 by z2. The sign of the result is the sign of

z2. The result lies between 0 (inclusive) and z2 (exclusive), and the di�erence of z1 and this

result is divisible by z2 without remainder.

div and mod satisfy:

(= z2 (+ (* (div z1 z2) z2) (mod z1 z2)))

79

ISLISP Working Draft 20.3 PUBLIC DOMAIN

That is, the evaluation of the above form always return t.

An error shall be signaled if either z1 or z2 is not an integer (error-id. domain-error).

Example:

(div 12 3)) 4

(div 14 3)) 4

(div -12 3)) -4

(div -14 3)) -5

(div 12 -3)) -4

(div 14 -3)) -5

(div -12 -3)) 4

(div -14 -3)) 4

(mod 12 3)) 0

(mod 7 247)) 7

(mod 247 7)) 2

(mod 14 3)) 2

(mod -12 3)) 0

(mod -14 3)) 1

(mod 12 -3)) 0

(mod 14 -3)) -1

(mod -12 -3)) 0

(mod -14 -3)) -2

(gcd z1 z2) ! <integer> function

gcd returns the greatest common divisor of its integer arguments. The result is a non-negative

integer. For nonzero arguments the greatest common divisor is the largest integer such z that z1
and z2 are integral multiples of z .

An error shall be signaled if either z1 or z2 is not an integer (error-id. domain-error).

Example:

(gcd 12 5)) 1

(gcd 15 24)) 3

(gcd -15 24)) 3

(gcd 15 -24)) 3

(gcd -15 -24)) 3

(gcd 0 -4)) 4

(gcd 0 0)) 0

(lcm z1 z2) ! <integer> function

80

PUBLIC DOMAIN ISLISP Working Draft 20.3

lcm returns the least common multiple of its integer arguments. gcd and lcm satis�es:

(= (* (gcd m n) (lcm m n)) (abs (* m n)))

That is, the evaluation of the above form always return t.

An error shall be signaled if either z1 or z2 is not an integer (error-id. domain-error).

Example:

(lcm 2 3)) 6

(lcm 15 24)) 120

(lcm 15 -24)) 120

(lcm -15 24)) 120

(lcm -15 -24)) 120

(lcm 0 -4)) 0

(lcm 0 0)) 0

(isqrt z) ! <integer> function

Returns the greatest integer less than or equal to the exact positive square root of z . An error

shall be signaled if z is not a non-negative integer (error-id. domain-error).

Example:

(isqrt 49)) 7

(isqrt 63)) 7

(isqrt 1000000000000002000000000000000)

) 1000000000000000

12 Character class

Characters are represented as instances of the <character> class. This insulates the

programmer from particular character codes,

The ISLISP character set has at least ninety-�ve printing characters plus a newline character.

The ISLISP printing characters are the space character, and the following ninety-four non-blank

characters:

! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _

` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

81

ISLISP Working Draft 20.3 PUBLIC DOMAIN

A character literal is denoted by #\ followed by a token which is either the character itself, or, if

the character has a name, the character's name. For example, the letter A is denoted by \#nA".
The newline and space characters have the names \newline" and \space," respectively, so they

can be denoted by \#nnewline" and \#nspace". (Case is not signi�cant when naming a

character.)

Characters are ordered by char<, and this order satis�es:

0<1<2<3<4<5<6<7<8<9

A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z

a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<q<r<s<t<u<v<w<x<y<z

where char1 < char2 means that (char< char1 char2) is true.

(characterp obj) ! boolean function

Returns t if obj is a character (instance of class <character>); otherwise, returns nil. obj may

be any ISLISP object.

Example:

(characterp #na)) t

(characterp "a")) nil

(characterp 'a)) nil

(char= char1 char2) ! boolean function

(char/= char1 char2) ! boolean function

(char< char1 char2) ! boolean function

(char> char1 char2) ! boolean function

(char<= char1 char2) ! boolean function

(char>= char1 char2) ! boolean function

The function char= tests whether char1 is the same character as char2. The function char< tests

whether char1 is less than char2. The function char<= tests whether char1 is less than or equal

to char2. The ordering used is the partial order de�ned above, extended to a total order on all

characters in an implementation-de�ned manner. If the test is satis�ed, t is returned; otherwise,

nil is returned.

Two characters are char/= if and only if they are not char=. Two characters are char> if and

only if they are not char<=. Two characters are char>= if and only if they are not char<.

An error shall be signaled if either char1 or char2 is not a character (error-id. domain-error).

Example:

(char= #na #na)) t

(char= #na #nb)) nil

82

PUBLIC DOMAIN ISLISP Working Draft 20.3

(char= #na #nA)) nil

(char/= #na #na)) nil

(char< #na #na)) nil

(char< #na #nb)) t

(char< #nb #na)) nil

(char< #na #nA)) nil or t (implementation-de�ned)
(char< #n* #na)) nil or t (implementation-de�ned)
(char> #nb #na)) t

(char<= #na #na)) t

(char<= #na #nA)) nil or t (implementation-de�ned)
(char>= #nb #na)) t

(char>= #na #na)) t

13 List class

The <list> class is partitioned into two subclasses <cons> and <null>.

13.1 Cons

A cons (sometimes also called \dotted pair") consists of two components; the left component is

called car and the right component is called cdr. The constructor of this class is cons. Conses

are written as

(car . cdr)

where car and cdr denote the values in the car and cdr components, respectively, of the cons

object. As a special case, if the cdr value is nil, then the cons object is written as

(car)

Thus, in general, a data structure that consists of cons objects will be written in either of the

following formats:

(x1 . (x2 . : : : (xn�1 . xn) : : :))

(x1 . (x2 . : : : (xn�1) : : :))

These may be written, respectively, as

(x1 x2 : : : xn�1 . xn)

(x1 x2 : : : xn�1)

(consp obj) ! boolean function

83

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Returns t if obj is a cons (instance of class <cons>); otherwise, returns nil. obj may be any

ISLISP object.

Example:

(consp '(a . b))) t

(consp '(a b c))) t

(consp '())) nil

(consp #(a b))) nil

(cons obj1 obj2) ! <cons> function

This function builds a cons from two objects, with obj1 as its car (or `left') part and with obj2 as
its cdr (or `right') part. An error shall be signaled if the requested cons cannot be allocated

(error-id. cannot-create-cons). Both obj1 and obj2 may be any ISLISP object.

Example:

(cons 'a '())) (a)

(cons '(a) '(b c d))) ((a) b c d)

(cons "a" '(b c))) ("a" b c)

(cons 'a 3)) (a . 3)

(cons '(a b) 'c)) ((a b) . c)

(car cons) ! <object> function

The function car returns the left component of the cons. An error shall be signaled if cons is not
a cons (error-id. domain-error).

Example:

(car '()) an error shall be signaled
(car '(a b c))) a

(car '((a) b c d))) (a)

(car '(1 . 2))) 1

(cdr cons) ! <object> function

The function cdr returns the right component of the cons. An error shall be signaled if cons is

not a cons (error-id. domain-error).

Example:

84

PUBLIC DOMAIN ISLISP Working Draft 20.3

(cdr '()) an error shall be signaled
(cdr '((a) b c d))) (b c d)

(cdr '(1 . 2))) 2

(setf (car cons) obj) ! <object> special form

(set-car obj cons) ! <object> function

The setf special form takes the place indicated by the selector car and updates the left

component of an instance of the <cons>. The returned value is the result of the evaluation of

obj . An error shall be signaled if cons is not a cons (error-id. domain-error). obj may be any

ISLISP object.

Example:

(let ((x (list 'apple 'orange)))

(list x (car x)

(setf (car x) 'banana)

x (car x)))

) ((banana orange) apple banana (banana orange) banana)

(setf (cdr cons) obj) ! <object> special form

(set-cdr obj cons) ! <object> function

The setf special form takes the place indicated by the selector cdr and updates the right

component of an instance of <cons>. The returned value is the result of the evaluation of obj .
An error shall be signaled if cons is not a cons (error-id. domain-error). obj may be any ISLISP

object.

Example:

(let ((x (list 'apple 'orange)))

(list x (cdr x)

(setf (cdr x) 'banana)

x (cdr x)))

) ((apple . banana) (orange) banana (apple . banana) banana)

13.2 Null class

This class consists of only one element, the object called nil. This object is the false value in

boolean expressions. The length of the sequence nil is 0.

(null obj) ! boolean function

85

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Returns t if obj is nil; otherwise, returns nil.5 obj may be any ISLISP object.

Example:

(null '(a b c))) nil

(null '())) t

(null (list))) t

13.3 List operations

(listp obj) ! boolean function

Returns t if obj is a list (instance of class <list>); otherwise, returns nil. obj may be any

ISLISP object.

Example:

(listp '(a b c))) t

(listp '())) t

(listp '(a . b))) t

(let ((x (list 'a)))

(setf (cdr x) x)

(listp x))) t

(listp "abc")) nil

(listp #(1 2))) nil

(listp 'jerome)) nil

(create-list i [initial-element]) ! <list> function

Returns a list of length i . If initial-element is given, the elements of the new list are initialized

with this object; otherwise, the initialization is implementation de�ned. An error shall be

signaled if the requested list cannot be allocated (error-id. cannot-create-list). An error shall be

signaled if i is not an integer (error-id. domain-error). initial-element may be any ISLISP object.

Example:

(create-list 3 17)) (17 17 17)

(create-list 2 #na)) (#na #na)

5If the naming conventions were strictly observed, null would be named nullp; it is named null for historical

and compatibility reasons.

86

PUBLIC DOMAIN ISLISP Working Draft 20.3

(list obj*) ! <list> function

Returns a new list whose length is the number of arguments and whose elements are the

arguments in the same order as in the list-form. An error shall be signaled if the requested list

cannot be allocated (error-id. cannot-create-list). Each obj may be any ISLISP object.

Example:

(list 'a (+ 3 4) 'c)) (a 7 c)

(list)) nil

(reverse list) ! <list> function

(nreverse list) ! <list> function

These functions each return a list whose elements are those of the given list , but in reverse order.

An error shall be signaled if list is not a list (error-id. domain-error).

For reverse, no side-e�ect to the given list occurs. The resulting list is permitted but not

required to share structure with the input list .

For nreverse, the conses which make up the top level of the given list are permitted, but not

required, to be side-e�ected in order to produce this new list. nreverse should never be called

on a literal object.

Example:

(reverse '(a b c d e))) (e d c b a)

(reverse '(a))) (a)

(reverse '())) ()

(let* ((x (list 'a 'b)) (y (nreverse x))) (equal x y))

) implementation-de�ned

(append list*) ! <list> function

Returns the result of appending all of the lists, or () if given no lists. An error shall be signaled

if any list is not a list (error-id. domain-error).

This function does not modify its arguments. It is implementation de�ned whether and when the

result shares structure with its list arguments.

An error shall be signaled if the list cannot be allocated (error-id. cannot-create-list).

Example:

87

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(append '(a b c) '(d e f))) (a b c d e f)

(member obj list) ! <list> function

If list contains at least one occurrence of obj (as determined by eql), the �rst sublist of list
whose car is obj is returned. Otherwise, nil is returned. An error shall be signaled if list is not a
list (error-id. domain-error).

Example:

(member 'c '(a b c d e f))) (c d e f)

(member 'g '(a b c d e f))) nil

(member 'c '(a b c a b c))) (c a b c)

(mapcar function list+) ! <list> function

(mapc function list+) ! <list> function

(mapcan function list+) ! <list> function

(maplist function list+) ! <list> function

(mapl function list+) ! <list> function

(mapcon function list+) ! <list> function

Successively applies the given function to sets of arguments determined by the given lists. The
way in which the arguments are determined, and the way in which the result is accumulated are

how these functions di�er.

Function Argument Result

mapcar successive elements successive cons

mapc successive elements none (i.e., list1 returned)
mapcan successive elements successive \destructive append"

maplist successive sublists successive cons

mapl successive sublists none (i.e., list1 returned)
mapcon successive sublists successive \destructive append"

mapcar operates on successive elements of the lists. function is applied to the �rst element of

each list , then to the second element of each list , and so on. The iteration terminates when the

shortest list runs out, and excess elements in other lists are ignored. The value returned by

mapcar is a list of the results of successive calls to function.

mapc is like mapcar except that the results of applying function are not accumulated; list1 is
returned.

maplist is like mapcar except that function is applied to successive sublists of the lists. function
is �rst applied to the lists themselves, and then to the cdr of each list , and then to the cdr of the

cdr of each list , and so on.

88

PUBLIC DOMAIN ISLISP Working Draft 20.3

mapl is like maplist except that the results of applying function are not accumulated; list1 is
returned.

mapcan and mapcon are like mapcar and maplist respectively, except that the results of applying

function are combined into a list by the use of an operation that performs a destructive form of

append rather than list.

An error shall be signaled if function is not a function (error-id. domain-error). An error shall

be signaled if any list is not a list (error-id. domain-error).

In all cases, the calls to function proceed from left to right, so that if function has side e�ects, it

can rely upon being called �rst on all of the elements with index 0, then on all of those

numbered 1, and so on.

Example:

(mapcar #'car '((1 a) (2 b) (3 c)))) (1 2 3)

(mapcar #'abs '(3 -4 2 -5 -6))) (3 4 2 5 6)

(mapcar #'cons '(a b c) '(1 2 3))) ((a . 1) (b . 2) (c . 3))

(let ((x 0)) (mapc (lambda (v) (setq x (+ x v))) '(3 5)) x)

) 8

(maplist #'append '(1 2 3 4) '(1 2) '(1 2 3))

) ((1 2 3 4 1 2 1 2 3) (2 3 4 2 2 3))

(maplist (lambda (x) (cons 'foo x)) '(a b c d))

) ((foo a b c d) (foo b c d) (foo c d) (foo d))

(maplist (lambda (x) (if (member (car x) (cdr x)) 0 1))

'(a b a c d b c))

) (0 0 1 0 1 1 1)

(let ((k 0))

(mapl (lambda (x)

(setq k (+ k (if (member (car x) (cdr x)) 0 1))))

'(a b a c d b c))

k)

) 4

(mapcan (lambda (x) (if (> x 0) (list x))) '(-3 4 0 5 -2 7))

) (4 5 7)

(mapcon (lambda (x) (if (member (car x) (cdr x)) (list (car x))))

'(a b a c d b c b c))

) (a b c b c)

(mapcon #'list '(1 2 3 4))) ((1 2 3 4) (2 3 4) (3 4) (4))

89

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(assoc obj association-list) ! <cons> function

If assocation-list contains at least one cons whose car is obj (as determined by eql), the �rst

such cons is returned. Otherwise, nil is returned. An error shall be signaled if association-list is
not a list of conses (error-id. domain-error).

Example:

(assoc 'a '((a . 1) (b . 2)))) (a . 1)

(assoc 'a '((a . 1) (a . 2)))) (a . 1)

(assoc 'c '((a . 1) (b . 2)))) nil

14 Arrays

14.1 Array Classes

Arrays store data in array components, which are indexed by a tuple of non-negative integers

called indices.

The total number of elements in the array is the product of the dimensions. Zero-dimensional

arrays are permissible and, as a consequence of this rule, can store exactly one element, indexed

by an empty tuple of indices.

There are several array classes. For a pictorial representation of their inheritance relationship,

see Figure 1. The following is an explanation of the purpose of each of these classes:

� <basic-array>

All arrays are of the abstract class <basic-array>, but (as with all abstract classes) there

are no direct instances of this class. It is provided for type discrimination purposes only.

ISLISP de�nes two direct subclasses of <basic-array>: <basic-vector> and

<basic-array*>. These classes are mutually exclusive and form an exhaustive partition of

the set of basic-arrays. There shall be no other direct subclasses of of <basic-array>.

� <basic-vector>

All one-dimensional arrays are of the abstract class <basic-vector>, but (as with all

abstract classes) there are no direct instances of this class. It is provided for type

discrimination purposes only.

ISLISP de�nes only two direct subclasses of <basic-vector>: <general-vector> and

<string>. There may be additional, implementation-de�ned subclasses of

<basic-vector>.

Note: An implementation might provide specialized array representations for one-dimensional

arrays of bits. If provided, such an array representation would be subclass of <basic-vector>.

90

PUBLIC DOMAIN ISLISP Working Draft 20.3

� <general-vector>

An object of class <general-vector> is a one-dimensional array that is capable of holding

elements of type <object>. When the function create-array is asked to create a

one-dimensional array, the resulting array is of this class.

� <string>

An object of class <string> is a one-dimensional array that is capable only of holding

elements of type <character>. When the function create-string is used, the result is of

this class.

� <basic-array*>

All non-one-dimensional arrays are of the abstract class <basic-array*>, but (as with all

abstract classes) there are no direct instances of this class. It is provided for type

discrimination purposes only.

ISLISP de�nes only one direct subclass of <basic-array*>: <general-array*>. There may

be additional, implementation-de�ned subclasses of <basic-array*>.

Note: An implementation might provide specialized array representations for two-dimensional

arrays of 1 or more bits to hold display information for a monochrome or color screen. If provided,

such array representations would be subclasses of <basic-array*>.

� <general-array*>

An object of class <general-array*> is a non-one-dimensional array that is capable of

holding elements of type <object>. When the function create-array is asked to create an

array of dimensionality other than 1, the resulting array is of this class.

14.2 General Arrays

An object that is either of class <general-vector> or of class <general-array*> is sometimes

called a \general array."

General arrays are capable of storing any object of class <object>. Those arrays that are not

general arrays are the ones restricted to storage objects of more specialized classes.

A general array can be expressed as a textual literal using #na notation (where n is an integer

indicating the number of dimensions of the array) followed by a nested list of sequences denoting

the contents of the array. This structure can be de�ned as follows. If n = 1 the structure is

simply (obj1 : : : objn). If n > 1 and the dimensions are (n1 n2 : : :), the structure is (str1 : : :

strn1), where the stri are the structures of the n1 subarrays, each of which has dimensions (n2
: : :). For example, the textual representation of (create-array '(2 3 4) 5) is as follows:

#3a(((5 5 5 5) (5 5 5 5) (5 5 5 5)) ((5 5 5 5) (5 5 5 5) (5 5 5 5))).

14.3 Array Operations

To manipulate arrays ISLISP provides the following functions.

(basic-array-p obj) ! boolean function

(basic-array*-p obj) ! boolean function

(general-array*-p obj) ! boolean function

91

ISLISP Working Draft 20.3 PUBLIC DOMAIN

basic-array-p returns t if obj is a basic-array (instance of class <basic-array>); otherwise,

returns nil. obj may be any ISLISP object.

basic-array*-p returns t if obj is a basic-array* (instance of class <basic-array*>); otherwise,
returns nil. obj may be any ISLISP object.

general-array*-p returns t if obj is a general-array* (instance of class <general-array*>);

otherwise, returns nil. obj may be any ISLISP object.

Example:

(mapcar (lambda (x)

(list (basic-array-p x)

(basic-array*-p x)

(general-array*-p x)))

'((a b c)

"abc"

#(a b c)

#1a(a b c)

#2a((a) (b) (c))))

) ((nil nil nil) (t nil nil) (t nil nil) (t nil nil) (t t t))

(create-array dimensions [initial-element]) ! <basic-array> function

This function creates an array of the given dimensions. The dimensions argument is a list of

non-negative integers.

The result is of class <general-vector> if there is only one dimension, or of class

<general-array*> otherwise.

If initial-element is given, the elements of the new array are initialized with this object,

otherwise the initialization is implementation de�ned.

An error shall be signaled if the requested array cannot be allocated (error-id.

cannot-create-array).

An error shall be signaled if dimensions is not a proper list of non-negative integers (error-id.

domain-error). initial-element may be any ISLISP object.

Example:

(create-array '(2 3) 0.0)) #2a((0.0 0.0 0.0) (0.0 0.0 0.0))

(create-array '(2) 0.)) #(0.0 0.0)

(aref basic-array z*) ! <object> function

(garef general-array z*) ! <object> function

92

PUBLIC DOMAIN ISLISP Working Draft 20.3

aref returns the object stored in the component of the basic-array speci�ed by the sequence of

integers z . This sequence must have exactly as many elements as there are dimensions in the

basic-array , and each one must satisfy 0 � zi < di, di the i
th dimension and 0 � i < d, d the

number of dimensions. Arrays are indexed 0 based, so the ith row is accessed via the index i� 1.

An error shall be signaled if basic-array is not a basic-array (error-id. domain-error). An error

shall be signaled if any z is not a non-negative integer (error-id. domain-error).

garef is like aref but an error shall be signaled if its �rst argument, general-array , is not an
object of class <general-vector> or of class <general-array*> (error-id. domain-error).

Example:

(defglobal array1 (create-array '(3 3 3) 0))

) array1

array1

) #3a(((0 0 0) (0 0 0) (0 0 0))

((0 0 0) (0 0 0) (0 0 0))

((0 0 0) (0 0 0) (0 0 0)))

(aref array1 0 1 2)) 0

(setf (aref array1 0 1 2) 3.14)) 3.14

(aref array1 0 1 2)) 3.14

(aref (create-array '(8 8) 6) 1 1)) 6

(aref (create-array '() 19))) 19

(setf (aref basic-array z*) obj) ! <object> special form

(set-aref obj basic-array z*) ! <object> function

(setf (garef general-array z*) obj) ! <object> special form

(set-garef obj general-array z*) ! <object> function

With setf the object obtainable by aref or garef, respectively, is replaced. The constraints on

the basic-array , the general-array , and the sequence of indices z is the same as for aref and

garef.

Example:

(setf (aref array1 0 1 2) 3.15)) 3.15

(set-aref 51.3 array1 0 1 2)) 51.3

(array-dimensions basic-array) ! <list> function

Returns a list of the dimensions of a given basic-array . An error shall be signaled if basic-array
is not a basic-array (error-id. domain-error). The consequences are unde�ned if the returned list

is modi�ed.

93

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Example:

(array-dimensions

(create-array '(2 2) 0))) (2 2)

(array-dimensions (vector 'a 'b))) (2)

(array-dimensions "foo")) (3)

15 Vectors

A vector is a one dimensional array. See x14.1 for detailed information about the relationship of

arrays and vectors.

General vectors are written as follows:

#(x1 x2 : : : xn)

(basic-vector-p obj) ! boolean function

(general-vector-p obj) ! boolean function

basic-vector-p returns t if obj is a basic-vector (instance of class <basic-vector>); otherwise,
returns nil. obj may be any ISLISP object.

general-vector-p returns t if obj is a general-vector (instance of class <general-vector>);

otherwise, returns nil. obj may be any ISLISP object.

Example:

(mapcar (lambda (x)

(list (basic-vector-p x)

(general-vector-p x)))

'((a b c)

"abc"

#(a b c)

#1a(a b c)

#2a((a) (b) (c))))

) ((nil nil) (t nil) (t t) (t t) (nil nil))

(create-vector i [initial-element]) ! <general-vector> function

Returns a general-vector of length i . If initial-element is given, the elements of the new vector

are initialized with this object, otherwise the initialization is implementation de�ned. An error

shall be signaled if the requested vector cannot be allocated (error-id. cannot-create-vector). An
error shall be signaled if i is not a non-negative integer (error-id. domain-error). initial-element
may be any ISLISP object.

94

PUBLIC DOMAIN ISLISP Working Draft 20.3

Example:

(create-vector 3 17)) #(17 17 17)

(create-vector 2 #na)) #(#na #na)

(vector obj*) ! <general-vector> function

Returns a new general-vector whose elements are its obj arguments. The length of the newly

created vector is, therefore, the number of objs passed as arguments. The vector is indexed by

integers ranging from 0 to dimension�1. An error shall be signaled if the requested vector

cannot be allocated (error-id. cannot-create-vector). Each obj may be any ISLISP object.

Example:

(vector 'a 'b 'c)) #(a b c)

(vector)) #()

16 String class

A string is a vector that is capable only of holding elements of type <character>. See x14.1 for
detailed information about the relationship of arrays, vectors, and strings.

Any implementation-de�ned character can be a string element. In ISLISP, string indices are

0-based. Strings are written by listing all the element characters in order and by enclosing them

with double quotes \"". If the string has a double quote as its element, the double quote must

be preceded by a backslash \\". If the string has a backslash as its element, the backslash must

be preceded by another backslash. Strings contained in program text as literals are immutable

objects. The representation of non-printable characters is implementation de�ned.

(stringp obj) ! boolean function

Returns t if obj is a string (instance of class <string>); otherwise, returns nil. obj may be any

ISLISP object.

Example:

(stringp "abc")) t

(stringp 'abc)) nil

(create-string i [initial-character]) ! <string> function

95

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Returns a string of length i . If initial-character is given, then the characters of the new string

are initialized with this character, otherwise the initialization is implementation de�ned. An

error shall be signaled if the requested string cannot be allocated (error-id. cannot-create-string).
An error shall be signaled if i is not a non-negative integer or if initial-character is not a

character (error-id. domain-error).

Example:

(create-string 3 #na)) "aaa"

(create-string 0 #na)) ""

(string= string1 string2) ! quasi-boolean function

(string/= string1 string2) ! quasi-boolean function

(string< string1 string2) ! quasi-boolean function

(string> string1 string2) ! quasi-boolean function

(string>= string1 string2) ! quasi-boolean function

(string<= string1 string2) ! quasi-boolean function

The function string= tests whether string1 is the same string as string2. The function string<

tests whether string1 is less than string2. The function string<= tests whether string1 is less
than or equal to string2.

The ordering used is based on character comparisons.

Two strings are string= if they are of the same length, l , and if for every i , where 0 � i < l,

(char= (elt string1 i) (elt string2 i)) holds.

Two strings string1 and string2 are in order (string<) if in the �rst position in which they di�er

the character of string1 is char< the corresponding character of string2, or if the string1 is a
proper pre�x of string2 (of shorter length and matching in all the characters of string1).

Two strings are string<= if they are either string< or they are string=.

Two strings are string/= if and only if they are not string=. Two strings are string> if and

only if they are not string<=. Two strings are string>= if and only if they are not string<.

For these 6 string comparison functions, if the test is satis�ed, an implementation-de�ned

non-nil value is returned; otherwise, nil is returned.

An error shall be signaled if either string1 or string2 is not a string (error-id. domain-error).

Example:

(if (string= "abcd" "abcd") t nil)) t

(if (string= "abcd" "wxyz") t nil)) nil

(if (string= "abcd" "abcde") t nil)) nil

(if (string= "abcde" "abcd") t nil)) nil

(if (string/= "abcd" "wxyz") t nil)) t

(if (string< "abcd" "abcd") t nil)) nil

(if (string< "abcd" "wxyz") t nil)) t

96

PUBLIC DOMAIN ISLISP Working Draft 20.3

(if (string< "abcd" "abcde") t nil)) t

(if (string< "abcde" "abcd") t nil)) nil

(if (string<= "abcd" "abcd") t nil)) t

(if (string<= "abcd" "wxyz") t nil)) t

(if (string<= "abcd" "abcde") t nil)) t

(if (string<= "abcde" "abcd") t nil)) nil

(if (string> "abcd" "wxyz") t nil)) nil

(if (string>= "abcd" "abcd") t nil)) t

(char-index character string [start-position]) ! <object> function

Returns the position of character in string , The search starts from the position indicated by

start-position (which is 0-based and defaults to 0). The value returned if the search succeeds is

an o�set from the beginning of the string , not from the starting point. If the character does not

occur in the string , nil is returned. The function eql is used for the comparisons.

An error shall be signaled if character is not a character or if string is not a string (error-id.

domain-error).

Example:

(char-index #nb "abcab")) 1

(char-index #nB "abcab")) nil

(char-index #nb "abcab" 2)) 4

(char-index #nd "abcab")) nil

(char-index #na "abcab" 4)) nil

(string-index substring string [start-position]) ! <object> function

Returns the position of the given substring within string . The search starts from the position

indicated by start-position (which is 0-based and defaults to 0). The value returned if the search

succeeds is an o�set from the beginning of the string , not from the starting point. If that

substring does not occur in the string , nil is returned. Presence of the substring is done by

sequential use of eql on corresponding elements of the two strings.

An error shall be signaled if either substring or string is not a string (error-id. domain-error).

Example:

(string-index "foo" "foobar")) 0

(string-index "bar" "foobar")) 3

(string-index "FOO" "foobar")) nil

(string-index "foo" "foobar" 1)) nil

(string-index "bar" "foobar" 1)) 3

(string-index "foo" "")) nil

97

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(string-index "" "foo")) 0

(string-append string*) ! <string> function

Returns a single string containing a sequence of characters that results from appending the

sequences of characters of each of the strings, or "" if given no strings. An error shall be

signaled if any string is not a string (error-id. domain-error).

This function does not modify its arguments. It is implementation de�ned whether and when the

result shares structure with its string arguments.

An error shall be signaled if the string cannot be allocated (error-id. cannot-create-string).

Example:

(string-append "abc" "def")) "abcdef"

(string-append "abc" "abc")) "abcabc"

(string-append "abc" "")) "abc"

(string-append "" "abc")) "abc"

(string-append "abc" "" "def")) "abcdef"

17 Sequence Functions

Objects that are either of class <basic-vector> or of class <list> are sometimes called

\sequences". The operations upon sequences are called \sequence functions."

(length sequence) ! <integer> function

Returns the length of sequence as an integer greater than or equal to 0.

When sequence is a basic-vector, length returns its dimension.

When sequence is a list, the result is the number of elements in the list; if an element is itself a

list, the elements within this sublist are not counted. In the case of dotted lists, length returns

the number of conses at the uppermost level of the list. Consistently with that, '(a b . c) �
(cons 'a (cons 'b 'c)) and (length '(a b . c))) 2.

An error shall be signaled if sequence is not a basic-vector or a list (error-id. domain-error).

Example:

(length '(a b c))) 3

(length '(a (b) (c d e)))) 3

98

PUBLIC DOMAIN ISLISP Working Draft 20.3

(length '())) 0

(length (vector 'a 'b 'c))) 3

(elt sequence z) ! <object> function

Given a sequence and an integer z satisfying 0 � z < (length sequence), elt returns the

element of sequence that has index z. Indexing is 0-based; i.e., z = 0 designates the �rst

element. An error shall be signaled if z is an integer outside of the mentioned range (error-id.

index-out-of-range).

An error shall be signaled if sequence is not a basic-vector or a list or if z is not an integer

(error-id. domain-error).

Example:

(elt '(a b c) 2)) c

(elt (vector 'a 'b 'c) 1)) b

(elt "abc" 0)) #na

(setf (elt sequence z) obj) ! <object> special form

(set-elt obj sequence z) ! <object> function

The setf special form takes the place indicated by the selector elt and updates this place with

the result of the evaluation of obj . The integer z satis�es 0 � z < (length sequence).

An error shall be signaled if z is an integer outside of the valid range of indices (error-id.

index-out-of-range). The returned value is the result of the evaluation of obj . An error shall be

signaled if sequence is not a basic-vector or a list or if z is not an integer (error-id.

domain-error). obj may be any ISLISP object.

Example:

(let ((string (create-string 5 #nx)))
(setf (elt string 2) #nO)
x)) "xxOxx"

(subseq sequence z1 z2) ! sequence function

Given a sequence sequence and two integers z1 and z2 satisfying

0 � z1 � z2 � (length sequence), this function returns the subsequence of length z2 � z1,

containing the elements with indices from z1 (inclusive) to z2 (exclusive). The subsequence is

newly allocated, and has the same class as sequence.

99

ISLISP Working Draft 20.3 PUBLIC DOMAIN

An error shall be signaled if the requested subsequence cannot be allocated (error-id.

cannot-create-sequence). An error shall be signaled if z1 or z2 are outside of the bounds

mentioned (error-id. index-out-of-range). An error shall be signaled if sequence is not a

basic-vector or a list, or if z1 is not an integer, or if z2 is not an integer (error-id. domain-error).

Example:

(subseq "abcdef" 1 4)) "bcd"

(subseq '(a b c d e f) 1 4)) (b c d)

(subseq (vector 'a 'b 'c 'd 'e 'f) 1 4)

) #(b c d)

(map-into destination function seq*) ! sequence function

Destructively modi�es destination to contain the results of applying function to successive

elements in the seqs. The destination is returned.

If destination and each element of seqs are not all the same length, the iteration terminates when

the shortest sequence (of any of the seqs or the destination) is exhausted.

The calls to function proceed from left to right, so that if function has side e�ects, it can rely

upon being called �rst on all of the elements with index 0, then on all of those numbered 1, and

so on.

An error shall be signaled if destination is not a basic-vector or a list (error-id. domain-error).
An error shall be signaled if any seq is not a basic-vector or a list (error-id. domain-error).

Example:

(setq a (list 1 2 3 4))) (1 2 3 4)

(setq b (list 10 10 10 10))) (10 10 10 10)

(map-into a #'+ a b)) (11 12 13 14)

a) (11 12 13 14)

b) (10 10 10 10)

(setq k '(one two three))) (one two three)

(map-into a #'cons k a)) ((one . 11) (two . 12) (three . 13) 14)

(let ((x 0))

(map-into a

(lambda () (setq x (+ x 2)))))

) (2 4 6 8)

a) (2 4 6 8)

100

PUBLIC DOMAIN ISLISP Working Draft 20.3

18 Stream class

Streams are instances of the <stream> class. They are objects that serve as sources or sinks of

data.

(streamp obj) ! boolean function

Returns t if obj is a stream (instance of class <stream>); otherwise, returns nil. obj may be any

ISLISP object. streamp is una�ected by whether its argument, if an instance of the class

<stream>, is open or closed.

Example:

(streamp (standard-input))) t

(streamp '())) nil

(open-stream-p obj) ! boolean function

Returns t if obj is an open stream; otherwise, returns nil.

(input-stream-p obj) ! boolean function

Returns t if obj is a stream that can handle input operations; otherwise, returns nil.

Example:

(input-stream-p (standard-input))) t

(input-stream-p (standard-output))) nil

(input-stream-p '(a b c))) nil

(output-stream-p obj) ! boolean function

Returns t if obj is a stream that can handle output operations; otherwise, returns nil.

Example:

(output-stream-p (standard-output))) t

(output-stream-p (standard-input))) nil

(output-stream-p "hello")) nil

101

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(standard-input) ! <stream> function

(standard-output) ! <stream> function

(error-output) ! <stream> function

The function standard-input returns the stream used as the default stream for input functions.

The function standard-output returns the stream used as the default stream for output

functions.

The function error-output returns the stream used as the default stream for warnings and

non-interactive error messages.

The value returned by each of these functions is initially implementation-de�ned, but can be

dynamically bound; see with-standard-input, with-standard-output, and

with-error-output.

(with-standard-input stream-form form*) ! <object> special operator

(with-standard-output stream-form form*) ! <object> special operator

(with-error-output stream-form form*) ! <object> special operator

These macros �rst evaluate their stream-form argument to produce a stream s and then evaluate

their body forms in a dynamic environment where the corresponding function (standard-input,

standard-output, or error-output) return the stream s.

Example:

(with-standard-input (create-string-input-stream "this is a string")

(list (read) (read)))

) (this is)

18.1 Streams to Files

Streams might be connected to �les or devices. Given a name, a stream can be created that is

connected to a �le having that name. File systems in which �les are not named are not

supported.

A �lename is represented by a string. The correct syntax of �lenames is implementation de�ned.

Streams to �les are created by open-input-file, open-output-file, open-io-file,

with-open-input-file, with-open-output-file, and with-open-io-file.

(open-input-file �lename [element-class]) ! <stream> function

(open-output-file �lename [element-class]) ! <stream> function

(open-io-file �lename [element-class]) ! <stream> function

open-input-file opens a �le for input only. open-output-file opens a �le for output only.

102

PUBLIC DOMAIN ISLISP Working Draft 20.3

open-io-file opens a �le for both input and output.

An error shall be signaled if �lename is not a string. The corresponding �le is opened in an

implementation-de�ned way. These functions return an instance of the <stream> class connected

to the �le speci�ed by �lename.

The element-class can be either the class <character> (the default) or a positive integer that is

a number of bits in a byte to be used for a binary stream. All implementations must support a

value of 8 (denoting integer byte values from 0 to 255), but some implementations might support

other byte sizes as well.

Note: When a binary stream is used, the order of bits within bytes and bytes within words (i.e.,

whether it is right to left or left to right) are each implementation de�ned.

Example:

(open-input-file "example.lsp" 8)

) implementation-de�ned

(with-open-input-file (name �le [element-class]) form*) ! <object> special operator

(with-open-output-file (name �le [element-class]) form*) ! <object> special operator

(with-open-io-file (name �le [element-class]) form*) ! <object> special operator

Each of these macros opens a stream to a �le (using open-input-file, open-output-file, or

open-io-file, respectively). evaluates the forms, closes the �le, and returns the value returned

by the last form (or nil if there are no forms).

The �le and element-class are evaluated and passed as arguments to the appropriate �le-opening

function. The stream created by opening the �le is bound to the variable named by name (as if

a let was used), so the identi�er name can be used to refer to the stream. Then the forms are
evaluated. The value of the last form (or nil if there is none) is returned.

The stream is closed on exit, whether or not exit from this macro is normal. For this reason,

these macros are usually preferred over the corresponding functions for opening and closing �les.

Example:

(with-open-output-file (outstream "example.dat")

(format outstream "hello"))

) nil

(with-open-input-file (instream "example.dat")

(read instream))

) hello

(close stream) ! implementation de�ned function

103

ISLISP Working Draft 20.3 PUBLIC DOMAIN

The function close closes the stream stream. If stream is closed it may no longer be used in

input or output operations. Closing a �le stream ends the association between the stream and its

�le. If the stream was already closed this function performs nothing. The result value is

implementation de�ned. An error shall be signaled if stream is not a stream (error-id.

domain-error).

Example:

(defglobal input-str (open-input-file "data.lsp"))

) input-str

(close input-str)) implementation-de�ned
(close input-str)) implementation-de�ned

(finish-output stream) ! <null> function

Completes any pending output to the destination designated by stream. Waits until the pending

output is complete and then returns nil. For instance, pending output might be stored in a

bu�er; in this case finish-output forces the bu�er to be written to the stream's destination.

An error shall be signaled if stream is not a stream that can handle output operations (error-id.

domain-error).

Example:

(defglobal output-str (open-output-file "data.lsp"))

) output-str

(finish-output output-str)) nil

18.2 Other Streams

Non-�le streams can be created by the following functions:

create-string-input-stream create-string-output-stream

A string stream is a stream that is simply a string. For input, the reading functions construct

objects from a character sequence obtained from an input string. For output, the printing

functions deliver characters which are collected to a result string.

(create-string-input-stream string) ! <stream> function

Creates and returns an input stream from the string . An error shall be signaled if string is not a

string (error-id. domain-error).

104

PUBLIC DOMAIN ISLISP Working Draft 20.3

Example:

(let ((str (create-string-input-stream "this is a string")))

(list (read str) (read str) (read str)))

) (this is a)

(create-string-output-stream) ! <stream> function

This function creates and returns a string output stream. The output to a string stream can be

retrieved by get-output-stream-string.

Example:

(let ((str (create-string-output-stream)))

(format str "hello")

(format str "world")

(get-output-stream-string str))

) "helloworld"

(get-output-stream-string stream) ! <string> function

Returns a string containing all characters written to stream since the last call to this function or

since the creation of the stream, if this function has not been called with stream before. An error

shall be signaled if stream is not a stream created with create-string-output-stream

(error-id. domain-error).

Example:

(let ((out-str (create-string-output-stream)))

(format out-str "This is a string")

(let ((part1 (get-output-stream-string out-str)))

(format out-str "right!")

(list part1 (get-output-string-stream))))

) ("This is a string" "right!")

19 Input and Output

19.1 Argument Conventions for Input Functions

Most of the reader functions that do input treat their arguments as follows:

105

ISLISP Working Draft 20.3 PUBLIC DOMAIN

When end-of-stream is reached (i.e., an attempt is made to read a stream element immediately

after the last one in the stream), the behavior depends on the value of eos-error-p (which

defaults to t): if eos-error-p is nil, the function returns the eos-value (which defaults to nil);

otherwise, an error shall be signaled (error-id. end-of-stream).

If the input-stream is not speci�ed, the standard input stream (the value returned by the

standard-input function) is used. An error shall be signaled if an input-stream does not satisfy

the input-stream-p predicate (error-id. not-an-input-stream).

19.2 Character I/O

The following operations are used for character I/O. An error shall be signaled if an attempt is

made to perform a character I/O operation on a stream that does not handle such operations.

(read [input-stream [eos-error-p [eos-value]]]) ! <object> function

The function read returns the ISLISP object that is created as the result of reading its textual

representation from the stream input-stream.

See x19.1 for information about how input-stream, eos-error-p, and eos-value are treated.

Example:

(defglobal str (create-string-input-stream "hello #(1 2 3) 123 #nnA"))
) str

(read str)) hello

(read str)) #(1 2 3)

(read str)) 123

(read str)) #nA
(read str nil "the end")) "the end"

(read-char [input-stream [eos-error-p [eos-value]]]) ! <object> function

read-char reads a single character from input-stream and returns the corresponding character

object.

See x19.1 for information about how input-stream, eos-error-p, and eos-value are treated.

Example:

(defglobal str (create-string-input-stream "hi"))

) str

(read-char str)) #nh

106

PUBLIC DOMAIN ISLISP Working Draft 20.3

(read-char str)) #ni
(read-char str) an error shall be signaled

(preview-char [input-stream [eos-error-p [eos-value]]]) ! <object> function

Returns the next character of input-stream, if any. The character is not consumed; the next

attempt to peek at or read a character from the stream sees that same character.

See x19.1 for information about how input-stream, eos-error-p, and eos-value are treated.

Example:

(let ((s (create-string-input-stream "foo")))

(list (preview-char s) (read-char s) (read-char s)))

) (#nf #nf #no)

(read-line [input-stream [eos-error-p [eos-value]]]) ! <object> function

Reads a line of characters from input-stream and returns them as a string (without the newline

character at the end of the line). If an end-of-stream is reached before the next newline character

and a non-empty line has been read prior to the end-of-stream, that line is returned.

See x19.1 for information about how input-stream, eos-error-p, and eos-value are treated.

Example:

(with-open-output-file (out "newfile")

(format out "This is an example")

(format out "~%")

(format out "look at the output file"))

) nil

(defglobal str (open-input-file "newfile"))

) str

(read-line str)) "This is an example"

(read-line str)) "look at the output file"

(stream-ready-p input-stream) ! boolean function

Returns t if an attempt to obtain the next element from the stream will not cause the processor

to have to wait; otherwise, returns nil. An error shall be signaled if stream is not a stream that

can handle input operations (error-id. domain-error).

107

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Example:

(with-open-output-file (out "testfile.dat")

(format out "This is an example"))) nil

(with-open-input-file (in "testfile.dat")

(stream-ready-p in))) t

(format output-stream format-string obj*) ! <null> function

(format-char output-stream char) ! <null> function

(format-float output-stream oat) ! <null> function

(format-fresh-line output-stream) ! <null> function

(format-integer output-stream integer radix) ! <null> function

(format-object output-stream obj escape-p) ! <null> function

(format-tab output-stream column) ! <null> function

The function format has the side-e�ect of printing according to format-string . An error shall be

signaled if the output-stream parameter does not satisfy the output-stream-p predicate

(error-id. not-an-output-stream). An error shall be signaled if format-string is not a string

(error-id. domain-error). The following is a summary of all the available format directives:

obj refers to the next item of the set of obj* to be processed.

~A Aesthetic: The obj is any object. obj is printed as it would with ~S, but without

escape characters. Characters are output directly without any conversion. That is,

the output generated using this format directive is suitable for being read by a

human reader.

This e�ect is implemented by (format-object output-stream obj nil).

~B Binary: An error shall be signaled if obj is not an integer. obj is printed in binary

radix (radix 2).

This e�ect is implemented by (format-integer output-stream obj 2).

~C Character: An error shall be signaled if obj is not a character. obj is output
directly without any conversion.

This e�ect is implemented by (format-char output-stream obj).

~D Decimal: An error shall be signaled if obj is not an integer. obj is printed in

decimal radix (radix 10).

This e�ect is implemented by (format-integer output-stream obj 10).

~G General oating point: An error shall be signaled if obj is not a number. obj is
printed as a oat.

This e�ect is implemented by (format-float output-stream obj).

~O Octal: An error shall be signaled if obj is not an integer. obj is printed in octal

radix (radix 8).

This e�ect is implemented by (format-integer output-stream obj 8).

108

PUBLIC DOMAIN ISLISP Working Draft 20.3

~nR Radix: An error shall be signaled if obj is not an integer. obj is printed in radix n
(which must be between 2 and 36, inclusive).

This e�ect is implemented by (format-integer output-stream obj n).

~S S-expression: obj is any object. This format directive outputs the textual

representation of obj , with escape characters as needed. That is, the output

generated using this format directive is suitable for input to the function read.

This e�ect is implemented by (format-object output-stream obj t).

~nT Tab: output enough spaces to move to column n (where column 0 represents the

left margin). If already at or beyond column n, one space is output. If an
implementation cannot determine the current column position, the behavior is

implementation de�ned, but at least one space will be output.

This e�ect is implemented by (format-tab output-stream n).

~X Hexadecimal: An error shall be signaled if obj is not an integer. obj is printed in

hexadecimal radix (radix 16).

This e�ect is implemented by (format-integer output-stream obj 16).

~% newline: output a #\newline character;

This e�ect is implemented by (format-char output-stream #nnewline).

~& conditional newline: output a #\newline character if it cannot be determined that

the output stream is at the beginning of a fresh line;

This e�ect is implemented by (format-fresh-line output-stream).

~~ tilde: output a tilde (~).

This e�ect is implemented by (format-char output-stream #n~).

Example:

(format output-stream "No result")) nil

Output is: No result

(format output-stream "The result is ~A and nothing else." "meningitis")

) nil

Output is: The result is meningitis and nothing else.

(format output-stream "The result i~C" #ns)
) nil

Output is: The result is

(format output-stream "The results are ~S and ~S." 1 #na)
) nil

Output is: The results are 1 and #na.

(format output-stream "Binary code ~B" 150)

) nil

Output is: Binary code 10010110

(format output-stream "permission ~O" 493)

) nil

109

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Output is: permission 755

(format output-stream "You ~X ~X" 2989 64206)

) nil

Output is: You BAD FACE

(progn

(format output-stream "~&Name ~10Tincome ~20Ttax~%")

(format output-stream "~A ~10T~D ~20T~D" "Grummy" 23000 7500))

) nil

Output is: Name income tax

Grummy 23000 7500

(format output-stream "This will be split into~%two lines.")

) nil

Output is: This will be split into

two lines.

(format output-stream "This is a tilde: ~~")

) nil

Output is: This is a tilde: ~

19.3 Binary I/O

The following operations are used for binary I/O. An error shall be signaled if an attempt is

made to perform a character I/O operation on a stream that does not handle such operations.

(read-byte input-stream [eos-error-p [eos-value]]) ! <integer> function

Reads a byte from the input-stream and returns it. The number of bits in a byte is determined

by the stream element type of the input-stream; see open-input-file.

See x19.1 for information about how input-stream, eos-error-p, and eos-value are treated.

Example:

;; This example assumes 8-bit byte codes are stored in files.

(defglobal byte-example (open-output-stream "byte-ex"))

) byte-example

(format byte-example "hello")) nil

(close byte-example)) nil

(setq byte-example (open-input-stream "byte-ex" 8))

) implementation-de�ned

(read-byte byte-example)) 104 (implementation-de�ned)
(read-byte byte-example)) 97 (implementation-de�ned)
(read-byte byte-example)) 108 (implementation-de�ned)

110

PUBLIC DOMAIN ISLISP Working Draft 20.3

(read-byte byte-example)) 108 (implementation-de�ned)
(read-byte byte-example)) 111 (implementation-de�ned)

(write-byte z output-stream) ! <integer> function

Writes z to the output-stream and returns it. An error shall be signaled if z is not an integer in

the range appropriate to the stream element type of output-stream or if output-stream is not a

stream capable of handling output operations (error-id. domain-error).

Example:

(let ((out-str (open-output-stream "byte-example" 8)))

(write-byte #b101 out-str)

(close out-str))) nil

20 Files

(probe-file �lename) ! boolean function

Returns t if the �le speci�ed by �lename exists; otherwise, returns nil. An error shall be

signaled if �lename is not a string (error-id. domain-error).

Example:

(probe-file "notexist.lsp")) nil

(defglobal new-file (open-output-file "notexist.lsp"))

) new-file

(close new-file)) nil

(probe-file "notexist.lsp")) t

(file-position stream) ! <integer> function

Returns the �le position associated with stream.

A �le position is a non-negative integer that represents a position in the stream. For binary

streams, the �le position represents the number of preceding bytes in the stream. It is increased

by one each time a one of the following is done:

111

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(read-byte stream)

(write-byte z stream)

For character streams, the �le position is increased by an implementation-de�ned non-negative

amount each time one of the following is done:

(format stream: : :)

(format-char stream char)
(format-float stream oat)
(format-fresh-line stream)

(format-integer stream integer radix)
(format-object stream obj escape-p)
(format-tab stream column)
(read-char stream)

(read-line stream)

(read stream)

The amount may depend on the output and on the �le position itself. If a stream supports �le

positions, it is implementation de�ned which integer represents the �rst element of the �le. An

error shall be signaled if stream is not a stream to or from a �le (error-id. domain-error).

Example:

;; This example assumes 8-bit byte codes are stored in files.

(defglobal example (open-output-file "example.lsp"))

) example

(format example "hello")) nil

(close example)) nil

(setq example (open-input-stream "example.lsp" 8))

) implementation-de�ned

(file-position example)) 0

(read-byte example)) 104 (implementation-de�ned)
(file-position example)) 1

(set-file-position stream z) ! <integer> function

Attempts to change the �le position (see file-position) of the stream stream to z . If it is not
possible to move to the exact position z , some implementation-de�ned motion within the �le

might still be performed. The value returned is the new �le position, which might or might not

be z .

An error shall be signaled if stream is not a stream to or from a �le, or if z is not a non-negative

integer (error-id. domain-error).

Example:

112

PUBLIC DOMAIN ISLISP Working Draft 20.3

(set-file-position example 4)) 4

(file-length �lename element-class) ! <integer> function

Returns the length of the �le named by �lename, or returns nil if the length cannot be

determined. The element-class determines the units. An error shall be signaled if �lname is not

a string (error-id. domain-error).

Example:

(file-length "file27.dat" 8)) 25

;; Implementations are not required to support byte size 2.

(file-length "file27.dat" 2)) 100

21 Condition System

The condition system, sometimes called the \error system," is a facility which permits problem

situations detected at runtime to be represented and resolved while still under the control of a

conforming program.

21.1 Conditions

When a problem situation is detected, a representation of that situation called a condition (or

sometimes a \condition object" to emphasize its nature as an ordinary ISLISP object) is

constructed and the situation represented by the condition is announced by a process called

signaling. This signaling process allows a dynamically established handler an opportunity to

resolve the problem.

Figure 1 shows an inheritance graph for the various condition classes.

Some condition classes require initialization arguments when using create so that associated

data can be provided. For more information, see x21.3.

Conditions that represent situations involving dynamically detected program errors are called

error conditions. Conditions that represent implementation limitations that may not be

symptomatic of program errors are called serious conditions.

Note: In some dialects of LISP a meaning is assigned to the idea of conditions that are not serious.

Such conditions are beyond the scope of this document; hence the use of the class name

<serious-condition> as the most general kind of condition de�ned herein.

113

ISLISP Working Draft 20.3 PUBLIC DOMAIN

21.2 Signaling and Handling Conditions

When a condition is signaled, the active handler is called with one argument, a condition

which represents the situation. An initial active handler will have been established by the

system; it will provide some implementation-de�ned action (such as return to toplevel, program

exit, or entry into an interactive debugger). User programs may also establish handlers (see

with-handler).

At any given time, only one handler is active. Establishing a new handler with with-handler

shadows any previously active handler. This newly established handler is active throughout

execution of its associated body of code unless shadowed by another use of with-handler.

If called, a handler function will execute in the dynamic environment of the call to

signal-condition, except that the handler context is re-bound to match the dynamic handler

state that was current at the point the handler function was established as the active handler.

Note: This means that handlers are not expected to handle errors in themselves. If a programmer

wishes to have a handler handle its own errors, he might use labels to allow the function a way to refer

to itself and might have the function re-establish itself as a handler within its own body.

When a handler is called, it must handle the condition by transferring control to a point outside

of the call to signal-condition. Such a transfer of control might be made explicitly by use of

go, throw, or return-from or implicitly by use of an abstract operation such as

continue-condition that has an equivalent e�ect. The consequences are unde�ned if the

handler returns normally; the handler is required to transfer control.

A handler may defer to previously established handlers by calling signal-condition on the

condition object which it received as an argument.

21.2.1 Operations relating to Condition Signaling

(error error-string obj*) ! <object> function

An error shall be signaled.

error-string and the objs are advice to the implementation about how the error message might

be textually described (using format), but whether or not that advice is used is implementation

de�ned.

This is equivalent to:

(signal-condition

(create (class <simple-error>)

'format-string error-string
'format-arguments (list obj*)))

nil)

114

PUBLIC DOMAIN ISLISP Working Draft 20.3

(cerror continue-string error-string obj*) ! <object> function

Like error, but the error that it signals is \continuable" (see continue-condition). The extra

argument continue-string describes what happens if this function returns.

This is equivalent to:

(signal-condition

(create (class <simple-error>)

'format-string error-string
'format-arguments (list obj*)))

(let ((str (create-string-output-string)))

(format str continue-string obj*)
(get-output-stream-string str)))

(signal-condition condition continuable) ! <object> function

Invokes the condition handling system on condition.

If continuable is nil, the results of attempting to \continue" (see continue-condition) are not

de�ned except that the call to signal-condition will not return normally.

If continuable is not nil, it will be possible to return from the call to signal-condition (see

continue-condition). In this case, the speci�c value of continuable may be a string indicating

the e�ect of continuing, or it may be the symbol t, indicating that an implementation-de�ned

string such as "Continue with no special action." is to be used.

Example:

(signal-condition (create (class <simple-error>)

'format-string "A ~A problem occurred."

'format-arguments '(bad))

nil)

21.2.2 Operations relating to Condition Handling

(ignore-errors form*) ! <object> special operator

Establishes a handler for <error>, such that if an error occurs during execution of forms,
ignore-errors will immediately return nil. Then it executes forms, returning the value

returned by the last form (or nil if there were no forms) if execution terminates normally.

115

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(report-condition condition stream) ! <condition> generic function

Presents a natural language description of condition to stream. This generic function may be

specialized for user-de�ned condition classes.

(condition-continuable condition) ! <object> function

Returns nil if condition is not continuable, or a string describing the e�ect of continuing

otherwise.

(continue-condition condition [value]) transfers control and data function

\Continues" from condition by �nding the call to signal-condition and arranging for it to

perform a normal return of the value, which defaults to nil.

The consequences are unde�ned if the condition is not continuable.

(with-handler handler form*) ! <object> special operator

Evaluates handler , which must yield a function (called the \handler function"). The handler

function is established as active handler (see x21.2) and then the forms are executed. If execution
of forms �nishes normally, the value of the last form (or nil if there are no forms) is returned.

21.3 Data associated with Condition Classes

Some of the condition classes de�ned by ISLISP permit data to be associated with a condition

object at its time of creation and later retrieved. Initialization arguments and accessors for such

classes are de�ned here.

21.3.1 Arithmetic Errors

<arithmetic-error> operation operation

operands operands

The operation is the function that was being performed, and the

operands is a list of the arguments it received.

(arithmetic-error-operation arithmetic-error) ! <function> function

(arithmetic-error-operands arithmetic-error) ! <list> function

These functions return the operation and operands supplied as data when creating the

arithmetic-error . An error shall be signaled if arithmetic-error is not a condition of class

116

PUBLIC DOMAIN ISLISP Working Draft 20.3

<arithmetic-error> (error-id. domain-error).

21.3.2 Domain Errors

<domain-error> object object

expected-class expected-class

The object is the o�ending object, and the expected-class is the
class that it was expected to be.

(domain-error-object domain-error) ! <object> function

(domain-error-expected-class domain-error) ! <class> function

These functions return the object and expected-class supplied as data when creating the

domain-error . An error shall be signaled if domain-error is not a condition of class

<domain-error> (error-id. domain-error).

21.3.3 Parse Errors

<parse-error> string string

expected-class expected-class

The string is the string that was being parsed, and the

expected-class is the class that the textual notation in the string
was expected to represent.

(parse-error-string parse-error) ! <string> function

(parse-error-expected-class parse-error) ! <class> function

These functions return the string and expected-class supplied as data when creating the

parse-error . An error shall be signaled if parse-error is not a condition of class <parse-error>

(error-id. domain-error).

21.3.4 Simple Errors

<simple-error> format-string format-string

format-arguments format-arguments

The format-string (a string) and format-arguments (a list of

objects) are passed through to format to construct the error

message. Each object in the list given as format-arguments
becomes a separate data argument, obj , in the call to format.

117

ISLISP Working Draft 20.3 PUBLIC DOMAIN

(simple-error-format-string simple-error) ! <string> function

(simple-error-format-arguments simple-error) ! <list> function

These functions return the format-string and format-arguments supplied as data when creating

the simple-error . An error shall be signaled if simple-error is not a condition of class

<simple-error> (error-id. domain-error).

21.3.5 Stream Errors

<stream-error> stream stream

The stream is the stream on which the error occurred.

(stream-error-stream stream-error) ! <stream> function

Returns the stream supplied as data when creating the stream-error . An error shall be signaled

if stream-error is not a condition of class <stream-error> (error-id. domain-error).

21.3.6 Unde�ned Entity Errors

<undefined-entity> name name

namespace namespace

The name is a symbol representing of the identi�er which was

unde�ned. The namespace is one of the symbols variable,

dynamic-variable, function, or class.

(undefined-entity-name unde�ned-entity) ! <symbol> function

(undefined-entity-namespace unde�ned-entity) ! <symbol> function

These functions return the name and namespace supplied as data when creating the

unde�ned-entity . An error shall be signaled if unde�ned-entity is not a condition of class

<undefined-entity> (error-id. domain-error).

The result of undefined-entity-namespace will be one of the symbols variable,

dynamic-variable, function, or class.

21.4 Error Identi�cation

The following is a summary of all named errors in the language and the semantics associated

with each error.

arity-error Errors of this kind occur when a function is activated with a

number of arguments that is not compatible with the number of

118

PUBLIC DOMAIN ISLISP Working Draft 20.3

parameters permitted by the function's de�nition. Errors of this

kind are represented as conditions of class <program-error>.

cannot-create-array Errors of this kind occur when a request is made to allocate an

array that cannot be allocated. Errors of this kind are represented

as conditions of class <storage-exhausted>.

cannot-create-cons Errors of this kind occur when a request is made to allocate a cons

that cannot be allocated. Errors of this kind are represented as

conditions of class <storage-exhausted>.

cannot-create-list Errors of this kind occur when a request is made to allocate a list

that cannot be allocated. Errors of this kind are represented as

conditions of class <storage-exhausted>.

cannot-create-sequence Errors of this kind occur if a function that produces a sequence

(e.g., subseq) cannot allocate that sequence. Errors of this kind
are represented as conditions of class <storage-exhausted>.

cannot-create-string Errors of this kind occur when a request is made to allocate a

string that cannot be allocated. Errors of this kind are represented

as conditions of class <storage-exhausted>.

cannot-create-vector Errors of this kind occur when a request is made to allocate a

vector that cannot be allocated. Errors of this kind are represented

as conditions of class <storage-exhausted>.

cannot-parse-number Errors of this kind occur when the string parameter received by the

parse-number function cannot be classi�ed as the textual

representation of a number. Errors of this kind are represented as

conditions of class <parse-error>.

control-error Errors of this kind occur when an attempt is made to leave a block

more than once or when there is no outstanding catcher for a catch
tag. Errors of this kind are represented as conditions of class

<control-error>.

division-by-zero Errors of this kind occur when an attempt is made to divide by

zero. Errors of this kind are represented as conditions of class

<division-by-zero>.

domain-error Errors of this kind occur when the object given as argument to a

standard function for which an argument class restriction is in

e�ect is not an instance of the class to which the argument is

restricted. Errors of this kind are represented as conditions of class

<domain-error>.

end-of-stream Errors of this kind occur when an attempt to read a character or

byte at the end-of-stream when eos-error-p argument is true, or

when an attempt to read a more complex object is about to begin

(e.g., by read or read-line) but the end-of-stream is seen before

parsing of that object has �nished. Errors of this kind are

represented as conditions of class <end-of-stream>.

immutable-binding Errors of this kind occur when an attempt is made to change an

immutable binding. Errors of this kind are represented as

conditions of class <program-error>.

119

ISLISP Working Draft 20.3 PUBLIC DOMAIN

improper-argument-list Errors of this kind occur when the last argument given to the

apply function is not a proper list. Errors of this kind are

represented as conditions of class <program-error>.

index-out-of-range Errors of this kind occur when the index given to a function that

accesses an element in a sequence (such as elt) is an integer

outside the range of the sequence. Errors of this kind are

represented as conditions of class <program-error>.

not-an-input-stream Errors of this kind occur when an attempt is made to read from a

stream which is not an input stream. Errors of this kind are

represented as conditions of class <domain-error>.

not-an-output-stream Errors of this kind occur when an attempt is made to write to a

stream which is not an output stream. Errors of this kind are

represented as conditions of class <domain-error>.

unbound-variable Errors of this kind occur when an attempt is made to refer to an

unbound variable. Errors of this kind are represented as conditions

of class <unbound-variable>.

unde�ned-entity Errors of this kind occur when the entity denoted by an identi�er

does not exist when a reference to that entity is made. Errors of

this kind are represented as conditions of class

<undefined-entity>.

unde�ned-function Errors of this kind occur when a function does not exist at its

activation point. Errors of this kind are represented as conditions

of class <undefined-function>.

Some errors that can occur have not been named in this document, and others might be added

by the implementation. The above list should not be taken as an exhaustive list of all possible

errors in the language.

22 Miscellaneous

(identity obj) ! <object> function

Returns an object that is the same as obj under eql. obj may be any ISLISP object.

Example:

(identity '(a b c))) (a b c)

(get-universal-time) ! <integer> function

120

PUBLIC DOMAIN ISLISP Working Draft 20.3

Returns an approximation to the \current time" in Universal Time Format. The units are

seconds. Universal Time Format represents time as an integer number of seconds since the

beginning (i.e., midnight), January 1, 1900 UT (ignoring leap seconds). If get-universal-time

is called twice, the �rst value shall be less than or equal to the second value.

No implementation is required to have a way to verify that the time returned is correct.

However, an error shall be signaled if an implementation can determine that the time it would

return would not be correct (e.g., it can determine that the clock was never initialized).

Example:

(get-universal-time)) 2901312000

(get-internal-run-time) ! <integer> function

(get-internal-real-time) ! <integer> function

get-internal-real-time returns as an integer the current time in internal time units, relative
to an arbitrary time base. The di�erence between the values of two calls to this function is the

amount of elapsed real time (i.e., clock time) between the two calls.

get-internal-run-time returns as an integer the current run time in internal time units. The
precise meaning of this quantity is implementation de�ned. The di�erence between the values of

two calls to this function is the amount of time between the two calls during which

computational e�ort was expended on behalf of the executing program.

(internal-time-units-per-second) ! <integer> function

internal-time-units-per-second returns the number of time units per second for the

implementation.

121

ISLISP Working Draft 20.3 PUBLIC DOMAIN

Index

#' 21

#j 5
&rest 21, 50, 51, 53, 64

' 31

* 69

most-negative-float 76

most-positive-float 76

pi 72

+ 69

, 61

,@ 61

- 69

/= 68

:abstractp 46, 47

:accessor 46, 47, 49, 50

:after 50, 51, 52, 55, 64

:around 50, 51, 52, 55

:before 50, 51, 52, 55, 64

:boundp 46, 47

:generic-function-class 50, 51

:initarg 46, 47, 58

:initform 46, 47, 49, 58, 59

:metaclass 46, 47

:method 50

:method-combination 50, 51, 55

:reader 46, 49, 50

:rest 21, 50, 51, 53, 64

:writer 46, 47, 49, 50

< 68

<= 68

<simple-error> 114, 115

= 67

> 68

>= 68

` 61

j# 5

abs 71

abstract class 6

accessible (of a slot) 14

accessor 6

accessor (of a slot) 49

activation 6

active block 15

active handler 114

and 29

append 87

applicable (of a method) 54

applicable method 54

apply 23

aref 92, 93

arithmetic-error-operands 116

arithmetic-error-operation 116

array 6

array 90

array (general) 91

array-dimensions 93

assignment 31

assoc 90

assure 61

atan 73

atan2 74

atanh 75

auxiliary method 55

basic-array*-p 91

basic-array-p 91

basic-vector-p 94

binary i/o 110

binding 6, 31

block 40

boolean functions 26

booleans 26

call-next-method 56

car 84, 85

case 37

case forms 37

case-using 37

catch 42

catch tag 42

cdr 84, 85

ceiling 77

cerror 115

char-index 97

char/= 82

char< 82

char<= 82

char= 82

char> 82

char>= 82

character 5

character 81

character i/o 106

characterp 82

class 6, 10

class 59, 118

class option 45

class precedence list 11, 48

class-of 59

close 103

coercion 62

combination (of applicable methods) 53

comment begin 5

cond 36

122

PUBLIC DOMAIN ISLISP Working Draft 20.3

condition 7, 113

condition system 113

condition-continuable 116

conditional expressions 36

cons 5

cons 83

cons 84

consequences unde�ned 9

consp 83

constant 30
constants 30

constructor 4

continue-condition 116

control 30

conventions 3

convert 62

cos 73

cosh 75

create 57, 114, 115

create-array 92

create-list 86

create-string 95

create-string-input-stream 104

create-string-output-stream 105

create-string-output-string 115

create-vector 94

declarations 61

default method 54

defclass 46

defconstant 24

defdynamic 25

defgeneric 50

defglobal 24

de�ne (a slot) 14

de�ning form 19

de�ning operator 19

de�ning-form 4

de�ning-form-name 19

de�nition point 7

defmacro 60

defmethod 51

defun 25

destination 40

direct instance 7

direct subclass 11

direct superclass 11

directed acyclic graph 11

disestablishing a binding 17

div 79

domain-error-expected-class 117

domain-error-object 117

dotted pair 83

dynamic 7

dynamic 35

dynamic binding 15

dynamic exit 40

dynamic extent 16

dynamic variable 7

dynamic-let 35

dynamic-variable 118

e�ective method 53

elt 99

eq 26

eql 26

equal 28

error 9

error 114

error condition 113

error system 113

error-id. arity-error 10, 21, 118

error-id. cannot-create-array 92, 119

error-id. cannot-create-cons 84, 119

error-id. cannot-create-list 86, 87, 119
error-id. cannot-create-sequence 100, 119

error-id. cannot-create-string 96, 98, 119

error-id. cannot-create-vector 94, 95, 119

error-id. cannot-parse-number 67, 119

error-id. control-error 41, 42, 44, 119

error-id. division-by-zero 70, 79, 119

error-id. domain-error 9, 23, 59, 62, 65, 66,

67, 68, 69, 70, 71, 72, 73, 74, 75,

77, 78, 80, 81, 82, 84, 85, 86, 87,

88, 89, 90, 92, 93, 94, 96, 97, 98,

99, 100, 104, 105, 107, 108, 111,

112, 113, 117, 118, 119

error-id. end-of-stream 106, 119

error-id. immutable-binding 7, 119

error-id. improper-argument-list 23, 120
error-id. index-out-of-range 99, 100, 120

error-id. not-an-input-stream 106, 120

error-id. not-an-output-stream 108, 120

error-id. sample 9

error-id. unbound-variable 10, 19, 35, 120

error-id. unde�ned-entity 10, 120

error-id. unde�ned-function 10, 20, 21, 120

error-output 102

establishing a binding 17

evaluation 7, 17

evaluation model 2, 19

execution 2, 7

exp 71

expander 60

expected-class 117

expt 72

extension 7

extent 16

�le position 111

�le streams 102

123

ISLISP Working Draft 20.3 PUBLIC DOMAIN

file-length 113

file-position 111

�lename 102

�les 111

finish-output 104

flet 22

oat 5

oat 76

float 77

floatp 76

floor 77

for 39

form 2, 7

format 108

format-arguments 114, 115, 117, 118

format-char 108

format-float 108

format-fresh-line 108

format-integer 108

format-object 108

format-string 114, 115, 117, 118

format-tab 108

Forms and Evaluation 17

funcall 23

function 7

function 21, 118

function application form 18

function-name 18

functionp 20

garef 92, 93

gcd 80

general array 91

general-array*-p 91

general-vector-p 94

generic function 7, 49

generic-function-name 18

generic-function-p 50

gensym 66

get-internal-real-time 121

get-internal-run-time 121

get-output-stream-string 105, 115

get-universal-time 120

go 43

handle 114

handler 113

handler, active 114

identi�er 7

identity 120

if 36

ignore-errors 115

immutable binding 7

immutable object 7

implementation de�ned 7

implementation dependent 7

inde�nite extent 16

inheritance 7

inheritance (of slots) 49

initialize-object 59

input-stream-p 101

instance 10

instance (of a class) 8

instancep 59

integer 5

integer 78

integerp 79

internal-time-units-per-second 121

isqrt 81

keyword 6

labels 22

lambda 21

lcm 80

length 98

let 33

let* 34

lexical exit 40

Lexical Principle 15

lexical transfer of control 40

lexical visibility 15

list 5

list 83, 86

list 87

listp 86

literal 8

local precedence order 48

local-function-name 18

log 71

macro expansion 43

map-into 100

mapc 88

mapcan 88

mapcar 88

mapcon 88

mapl 88

maplist 88

max 70

member 88

metaclass 8, 11

method 8, 50

min 70

mod 79

name 118

named (of a symbol) 63

namespace 15

namespace 118

neutral alphabetic case 65

neutral alphabetic characters 65

next method 55

next-method-p 57

124

PUBLIC DOMAIN ISLISP Working Draft 20.3

nil 26

non-local exit 40

non-local transfer of control 40

not 29

nreverse 87

null 5

null 85

null 85

number 67

numberp 67

object 8

object 117

open-input-file 102

open-io-file 102

open-output-file 102

open-stream-p 101

operands 116

operation 116

operator 8

or 30

output-stream-p 101

pair 83

parameter pro�le 8

parameter specializer 50

parse-error-expected-class 117

parse-error-string 117

parse-number 67

patterns 2
place 8

position 8

predicates 26

prepared for execution 2

preview-char 107

primary method 55

print name 63

probe-file 111

process 8

processor 8

progn 38

program 8

property 65

property 65, 66

property (of a symbol) 63

property indicator 65

property value 65

quali�ed method 54

quali�er 50, 54

quasi-boolean 26

quasiquote 61

quote 31

quotient 70

read 106

read-byte 110

read-char 106

read-line 107

reader (of a slot) 49

receive (arguments to a function) 20

reciprocal 70

remove-property 66

report-condition 116

return (a value from a function) 20

return-from 40

reverse 87

round 78

satisfying parameter specializers 54

scope 8, 15

sequence 98

sequence function 98

sequencing (of forms) 38

serious condition 113

set-aref 93

set-car 85

set-cdr 85

set-elt 99

set-file-position 112

set-garef 93

set-property 66

set-up forms 17

setf 32, 35, 66, 85, 93, 99

setq 32

shadow (a class) 11

shadows 15

signal (an error) 9

signal-condition 115

signaling 9, 113

simple-error-format-arguments 118

simple-error-format-string 118

sin 73

sinh 75

slot 8

slot accessors 47

slot option 45

slot speci�er 45

special form 18

special operator 18

special-operator 18

specialize a generic funcition 50

specialized lambda-list 53

specialized parameter 53

sqrt 72

standard-input 102

standard-output 102

stream 101

stream 118

stream-error-stream 118

stream-ready-p 107

streamp 101

string 6

125

ISLISP Working Draft 20.3 PUBLIC DOMAIN

string 95

string 117

string streams 104

string-append 98

string-index 97

string/= 96

string< 96

string<= 96

string= 96

string> 96

string>= 96

stringp 95

structure (of an instance) 49

subclass 10, 11

subclassp 59

subseq 99

superclass 10, 11

symbol 6

symbol 31, 63

symbolp 63

t 26

tagbody 43

tagbody tag 43

tan 73

tanh 75

terminology 6

text 8

the 61

throw 42

toplevel form 8, 17

toplevel scope 8, 15

truncate 78

unbound 14

unde�ned consequences 9

undefined-entity-name 118

undefined-entity-namespace 118

unnamed (of a symbol) 63

unquali�ed method 54

unwind-protect 44

value 20

var 32

variable 31

variable 118

variable bindings 31

vector 6

vector 94

vector 95

violation 9

while 39

with-error-output 102

with-handler 116

with-open-input-file 103, 107, 108

with-open-io-file 103

with-open-output-file 103, 107, 108

with-standard-input 102

with-standard-output 102

write-byte 111

writer 8

126

